a:
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
=>BH(BH+CH)=20
=>BH*(BH+4BH)=20
=>5BH^2=20
=>BH^2=4
=>BH=2(cm)
=>CH=8cm
b: \(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
S ABC=1/2*AH*BC
=1/2*4*10
=20cm2
a:
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
=>BH(BH+CH)=20
=>BH*(BH+4BH)=20
=>5BH^2=20
=>BH^2=4
=>BH=2(cm)
=>CH=8cm
b: \(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
S ABC=1/2*AH*BC
=1/2*4*10
=20cm2
Cho tam giác ABC vuông tại A, BC=18cm, góc C=30 độ
a, giải tam giác ABc
b, vẽ đg cao AH của tam giác ABC, đg cao HD,HE của tam giác ABH,AHC. Khôq tính độ dài đoạn thẳng, cm AH^3 = BD.BC.EC
c, vẽ phân giác BF của tam giác ABC. Tính diện tích BFC
cho tam giác ABC có góc A = 90 độ , đường cao AH , gọi D và E lần luotj là hình chiếu của H trên AB và AC. Biết BH=4cm, HC=9cm.
a, tính độ dài DE
b, cm : AD.DB=AE.AC
c, các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M , n
cm : M là trung điểm của BH , N là trung điểm của CH
d, tính diện tích tứ giác DEMN
( vẽ giúp hình là chính ạ camon)
Cho tam giác ABC vuông tại A, biết AB=1/3AC.
a)Tính số đo B và C của tam giác ABC.
b) Kẻ AH vuông góc BC. Tính tỉ số BH/CH.
c) Biết diện tích tam giác ABC bằng 15cm^2. Tính diện tích tam giác ABH
Cho tam giác ABC vuông tại A, biết AB=1/3AC.
a)Tính số đo B và C của tam giác ABC.
b) Kẻ AH vuông góc BC. Tính tỉ số BH/CH.
c) Biết diện tích tam giác ABC bằng 15cm^2. Tính diện tích tam giác ABH
GIÚP MIK VS
Cho tam giác ABC vuông tại A, đường cao AH, \(\frac{AH}{AB}=\frac{1}{2}\), AC = 10 cm. Tính số đo góc ABC và độ dài các đoạn thẳng AB,BC,AH.
1) Cho tam giác ABC vuông tại A, đường cao AH, phân giác AD, biết BH = 63 cm, CH = 112 cm. Tính HD
2) Cho tam giác ABC vuông tại A, các đường trung tuyến AD và BE vuông góc với nhau tại G. Biết AB = \(\sqrt{6}\). Tính BC
Cho tam giác ABC vuông ở A, AB = 12 cm, AC = 16cm, phân giác AD , đường cao AH. Tính độ dài các đoạn HB, HD, HC.
Cho tam giác ABC vuông cân tại A. M là trung điểm BC. P thuộc AC, BI= AI.
a, tam giác MIN là tam giác gì ?
b, biết diện tích tam giác MIN = 1/4 diện tích tam giác ABC. Tính góc ABP
Cho đương tròn tâm O, đường kính BC cố định và điểm A thuộc đường tròn (O). kẻ AH vuông góc BC tại H. Gọi I,K theo thứ tự là tâm đường tròn nội tiếp của tam giác AHB và AHC. Đường thẳng IK cắt AB tại M và cắt AC tại N.
a) Chứng minh tam giác AMN vuông cân
b) Xác định vị trí của điểm A để tứ giác BCNM nội tiếp
c) Chứng minh diện tích tam giác AMN nhỏ hơn hoặc bằng 1/2 diện tích tam giác ABC