MA

Cho tam giác ABC vuông tại A, AD là tia phân giác góc A (D thuộc BC) . Biết BC=14cm,BD=8cm . Tính AB, AC?

NT
20 tháng 8 2021 lúc 21:41

Ta có: BD+CD=BC

nên CD=14-8=6

Xét ΔBAC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)

\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{3}\)

hay \(AB=\dfrac{4}{3}AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2\cdot\dfrac{25}{9}=14^2=196\)

\(\Leftrightarrow AC^2=70.56\)

\(\Leftrightarrow AC=8.4\left(cm\right)\)

\(\Leftrightarrow AB=\dfrac{4}{3}\cdot AC=\dfrac{4}{3}\cdot8.4=11.2\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HD
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
HH
Xem chi tiết
PB
Xem chi tiết
VQ
Xem chi tiết
H24
Xem chi tiết
DC
Xem chi tiết