PV

Cho tam giác  ABC vuông tại A  (AB<AC), trung tuyến AM ,đường cao Ah .gọi E<F lần lượt là hình chiếu của điểm H trên cạnh AB,AC

1, Tứ giác AEHF là hình gì ? Vì sao?

2, Biết AB = 3cm ,AM= 2,5 cm . Tính diện tích tam giác ABC

3, C/m AM vuông góc với EF

4, Trên tia đối của tia MA lấy điểm D sao cho MD=MA , gọi I là điểm đối xứng của A qua BC. C/m tứ giác BIDC là hình thang cân

H24
14 tháng 1 2016 lúc 14:19

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. Gọi K là giao điểm của EF và AM, J là giao điểm của EF và AH

CM: góc AEK = góc ABC

Vì J là giao điểm của 2 đường chéo trong hcn AEHF => ẠJ = JH = Ẹ = JF

=> tam giác EJA cân tại J => AEJ = EAH (1)

Xét tam giác vuông ABH => EAH +ABC = 90

Xét tam giác vuông ABC=> ABC + ACB = 90

=> EAH = ACB  và (1) => ACB = AEJ  (2)

Vì  AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = BM = MC

=> tam giác ABM cân tại M => EAK = ABC (3)

Xét tam giác EAK: có: AEJ + EAK = ACB + ABC  = 90 ( do 2 và 3)

=> tam giác AEK vuong tại K 

Hay AM vuông EF

4/. Vì A đới xứng với I qua BC => AI vuông góc với BC . Mà AH vuong với BC => A. H , I thẳng hàng . hay H là trung điểm của AI

Xét tam giác AID, có: 

H là trung ddierm của AI, M là trung điểm của AD 

=> HM là đường trung bình của tam giác AID => HM // ID

=> tứ giác BIDC là hình thang

Xét tam giác ABI , có: BH vừa là đường cao vừa là đường trung tuyến => ABI cân tại B => IBH = ABH (BH là đường phân giác) (4)

Xét tứ giác ABCD có: 

M là trung điểm BC

M là trung điểm AD

M = BC giao AD

=> ABCD là hình bình hành và A = 90 => ABCD là hình chữ nhật

=> DCB = ABC (DC // AB và solle trong) (5)

Từ 4 và 5 => BCD = IBC (= ABC) => Hình thang BIDC là hình thang cân

 

 

Bình luận (0)
H24
14 tháng 1 2016 lúc 14:29

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. 

Bình luận (0)
H24
14 tháng 1 2016 lúc 14:39

1/. Xét Tứ giác AEHF, có:

E = 90 (EH vuong góc AB)

F = 90 (HF vuong AC)

A = 90 (ABC vuong tai A)

=> AEHF là hcn

2/. Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM =1/2BC  => AM =MB = MC = 2,5 cm

=> BC = 2,5 x2 = 5cm

Áp dụng định lý Py-ta-go vào tam giác vuông ABC, có:

AB^2 +AC^2 =BC^2

9+AC^2 = 25

=> AC^2 = 25-9 = 16

=> AC =4cm

Diện tích tam giác ABC: 1/2AB.AC = 1/2(.3.4 )= 6cm^2

3/. Gọi J là giao điểm của EF và AH, K là giao điểm của EF và AM

Vì J là trung điểm của 2 đường chéo trong hcn AEHF => AJ = JE = JH = JF 

=> Tam giác AJE cân tại J => EAH = AEK (1)

Tá Có: EAH + ABH = ABH + ACH (=90) => EAH =ACH (2)

Từ (1) và (2) => AEK = ACH (3)

Vì AM là đường trung tuyến ứng với cạnh huyền trong tam giác vuông ABC => AM = MB = MC

=> Tam giác ABM cân tại M => EAK = ABM (4)

Xét tam giác EAK, có: EAK + AEK = ABM + ACH = 90 (do 3 và 4)

=> tam giác EAK cân tại  K => AM vuông góc với EF

4/. Vì A và I đối xứng với nhau qua BC => AI vuong BC , mà AH vuong bC => AI trùng AH => A, H , I thẳng hàng hay H là trung điểm của AI

Xét tam giác AID, có: AH = HI, AM = MD 

=> HM là đường trung bình của tam giác AID => HM // ID hay BC //ID

=> BIDC là hình thang

Vì BH vừa là đương cao vừa là đường trung tuyến của tam giác ABI => BIA cân tại B => BH là đường phân giác => ABC = CBI (5)

Xét tứ giác ABCD, có: 

M là trung điểm của Bc và M là trung điểm của AD => ABCD là hình bình hành và A = 90 => ABCD là hcn => AB //DC

=> DCB = ABC (slt) (6)

Từ 5 và 6 => IBC = DCB ( = ABC)

Vậy hình thang BIDC là hình thang cân (2 góc kề cạnh đáy =)

 

 

 

Bình luận (0)

Các câu hỏi tương tự
PV
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
LH
Xem chi tiết
TC
Xem chi tiết
TP
Xem chi tiết
VT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết