CN

Cho tam giác ABC vuông tại A (AB < AC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N.

a) Chứng minh tứ giác AMIN là hình chữ nhật.

b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi.

c) Cho AC = 20cm, BC = 25cm.Tính diện tích ΔABC

d) Đường thẳng BN cắt cạnh DC tại K. Chứng minh: Bộ Đề thi Toán lớp 8

NT
16 tháng 1 2022 lúc 21:20

a: Xét tứ giác AMIN có 

\(\widehat{AMI}=\widehat{ANI}=\widehat{NAM}=90^0\)

Do đó:AMIN là hình chữ nhật

b: Xét tứ giác ADCI có 

N là trung điểm của AC
N là trung điểm của DI

Do đó: ADCI là hình bình hành

mà IA=IC

nên ADCI là hình thoi

c: AB=15cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=15\cdot10=150\left(cm^2\right)\)

Bình luận (1)

Các câu hỏi tương tự
PB
Xem chi tiết
AH
Xem chi tiết
LT
Xem chi tiết
LN
Xem chi tiết
DN
Xem chi tiết
BT
Xem chi tiết
BT
Xem chi tiết
PV
Xem chi tiết
ON
Xem chi tiết