MA
Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB, cắt đường thẳng AH tại D. Tia AB và tia CD cắt nhau tại E.a)chứng minh BE/BA=DE/DCb) Qua E kẻ đường thẳng song song với AC, đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I, K. Chứng minh El=EK.c) Gọi N là giao điểm của EH và AC; Gọi Q là giao điểm của DN và BC; Gọi P là giao điểm của BN và AD. Chứng minh NA = NC và PQ // BD.d) Gọi G là giao điểm của đường thẳng AQ và CD. Qua Q kẻ đường thẳng song song với CE, cắt đường thẳng AC tại T. Chứng minh GH // AC và PT vuông góc với AD
NT
23 tháng 12 2023 lúc 10:53

a: Ta có: DB\(\perp\)AB

AC\(\perp\)AB

Do đó: DB//AC

Xét ΔECA có DB//AC

nên \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)

b: Xét ΔCEK có DB//EK

nên \(\dfrac{DB}{EK}=\dfrac{CD}{CE}\)(1)

Xét ΔAEI có DB//EI

nên \(\dfrac{DB}{EI}=\dfrac{AB}{AE}\left(2\right)\)

Ta có: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)

=>\(\dfrac{BE+BA}{BA}=\dfrac{DE+DC}{DC}\)

=>\(\dfrac{AE}{BA}=\dfrac{CE}{DC}\)

=>\(\dfrac{CD}{CE}=\dfrac{AB}{AE}\left(3\right)\)

Từ (1),(2),(3) suy ra EI=EK

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
AD
Xem chi tiết
SW
Xem chi tiết
AD
Xem chi tiết
AD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
VD
Xem chi tiết
NN
Xem chi tiết