Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. D, E lần lượt là hình chiếu của M lên AB và AC.
a) Chứng minh: ADME là hình chữ nhật
b) Chứng minh: BDEM là hình bình hành
c) Gọi O là giao điểm của BE và DM, I là trung điểm của EC. Chứng minh: AOMI là hình thang cân
d) Vẽ đường cao AH của tam giác ABC. Tính số đo góc DHE
Do MD\(\perp\)AB tại D =)\(\widehat{A\text{D}M}\)=900
Do ME\(\perp\)AC tại E =)\(\widehat{A\text{E}M}\)=900
Do tam giác ABC vuông tại A =) \(\widehat{BAC}\)=900
Xét tứ giác ADME có:
\(\widehat{A\text{D}M}\)=\(\widehat{A\text{E}M}\)=\(\widehat{BAC}\) ( vì cùng bằng 900)
=) ADME là hình chữ nhật
Xét tam giác ABC có :
M là trung điểm của BC
MD // AC
=) D là trung điểm của AB
Xét tam giác ABC có :
M là trung điểm của BC
ME // AB
=) E là trung điểm của AC
Xét tam giác ABC có :
D là trung điểm của AB
E là trung điểm của AC
=) DE là đường trung bình của tam giác ABC
=) DE //BC =) DE //BM (1)
Và DE= \(\frac{BC}{2}\)=BM=CM (vì M là trung điểm của BC ) (2)
Từ (1) và (2) =) BDEM là hình bình hành
dễ có tam giác AHB vuông tại H có D là trung điểm của AB=> AD=BD và HD là đường trung tuyến
áp dụng định lí: trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => HD=DA=BD=\(\frac{1}{2}\)AB
=> AD=DH hay tam giác ADH cân tại D=> \(\widehat{DAH}\)=\(\widehat{DHA}\)(1)
tương tự dễ có tam giác AHC vuông tại H có E là trung điểm AC=>AE=EC và HE là đường trung tuyến
áp dụng định lí: trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền =>HE=AE=EC=\(\frac{1}{2}\)ÁC
=>AE=HE hay tam giác AEH cân tại E =>\(\widehat{E\text{A}H}\)=\(\widehat{EHA}\)(2)
cộng (1) và (2) theo vế ta được \(\widehat{DA\text{E}}\)=\(\widehat{DHE}\)
mà \(\widehat{DA\text{E}}\)=\(\widehat{BAC}\)=90\(^0\)=> \(\widehat{DHE}\)= 900