H24

Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. D, E lần lượt là hình chiếu của M lên AB và AC.
a) Chứng minh: ADME là hình chữ nhật
b) Chứng minh: BDEM là hình bình hành
c) Gọi O là giao điểm của BE và DM, I là trung điểm của EC. Chứng minh: AOMI là hình thang cân
d) Vẽ đường cao AH của tam giác ABC. Tính số đo góc DHE

NN
14 tháng 11 2018 lúc 18:42

Do MD\(\perp\)AB tại D =)\(\widehat{A\text{D}M}\)=900  

Do ME\(\perp\)AC tại E =)\(\widehat{A\text{E}M}\)=900

Do tam giác ABC vuông tại A =) \(\widehat{BAC}\)=900

Xét tứ giác ADME có:

\(\widehat{A\text{D}M}\)=\(\widehat{A\text{E}M}\)=\(\widehat{BAC}\) ( vì cùng bằng 900)

=) ADME là hình chữ nhật

Xét tam giác ABC có :

M là trung điểm của BC

MD // AC

=) D là trung điểm của AB

Xét tam giác ABC có :

M là trung điểm của BC

ME // AB

=) E là trung điểm của AC

Xét tam giác ABC có :

D là trung điểm của AB

E là trung điểm của AC

=) DE là đường trung bình của tam giác ABC

=) DE //BC =) DE //BM  (1)

Và DE=  \(\frac{BC}{2}\)=BM=CM (vì M là trung điểm của BC )   (2)

Từ (1) và (2) =) BDEM là hình bình hành

Bình luận (0)
H24
14 tháng 11 2018 lúc 19:17

MÌnh chỉ cần phần d thôi

Bình luận (0)
NN
14 tháng 11 2018 lúc 20:07

dễ có tam giác AHB vuông tại H có D là trung điểm của AB=> AD=BD và HD là đường trung tuyến 

áp dụng định lí: trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền => HD=DA=BD=\(\frac{1}{2}\)AB

=> AD=DH hay tam giác ADH cân tại D=> \(\widehat{DAH}\)=\(\widehat{DHA}\)(1)

tương tự dễ có tam giác AHC vuông tại H có E là trung điểm AC=>AE=EC và HE là đường trung tuyến

áp dụng định lí: trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền =>HE=AE=EC=\(\frac{1}{2}\)ÁC

=>AE=HE hay tam giác AEH cân tại E =>\(\widehat{E\text{A}H}\)=\(\widehat{EHA}\)(2)

cộng (1) và (2) theo vế ta được \(\widehat{DA\text{E}}\)=\(\widehat{DHE}\)

mà \(\widehat{DA\text{E}}\)=\(\widehat{BAC}\)=90\(^0\)=> \(\widehat{DHE}\)= 900

Bình luận (0)

Các câu hỏi tương tự
LK
Xem chi tiết
DT
Xem chi tiết
PL
Xem chi tiết
S1
Xem chi tiết
PB
Xem chi tiết
PT
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết
NM
Xem chi tiết