PT

Cho tam giác ABC vuông tại A (AB<AC). Lấy M,E lần lượt là trung điểm cạnh BC, kẻ MD vuông góc với AB tại D, kẻ ME vuông góc với AC tại E.

a) Chứng minh ADME là hình chữ nhật

b) Chứng minh DBME là hình bình hành

c) Kẻ đường cao AH của tam giác ABC. Chứng minh DEMH là hình thang cân

DL
20 tháng 1 2022 lúc 11:20

hình bạn tự vẽ nhe

a, Xét tứ giác ADME có 3 góc vuông:\(MDA=DAE=MEA=90^o\)

do đó : ADME là hình chữ nhật.

b, Xét tam giác ABC có đường t.b ME (1)

lại có M là trung điểm BC và ME//DA 

=> D là trung điểm của AB (2)

từ (1) và (2) suy ra:

\(ME=\dfrac{1}{2}AB\)

hay ME=DB và ME//DB 

vậy tứ giác ADME là hình bình hành

c,

Xét tam giác EHD và tam giác EAD có 

DE cạnh chung 

AD=DH(gt)

góc HED = góc AED (gt)

do đó 2 tam giác EHD và EAD = nhau 

=> HE = AE ( 2 cạnh tương ứng )(3)

Xét hình chữ nhật ADME có :

DM= AE ( 2 cạnh đối = nhau )(4)

từ (3) và (4) suy ra :

HE=DM 

Xét tứ giác DEMH có :

HE =DM (cmt)

do đó : DEMH là hình thang cân ( 2 đường chéo = nhau ).

Bình luận (0)
TK
20 tháng 1 2022 lúc 11:02

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
VD
Xem chi tiết
LM
Xem chi tiết
HH
Xem chi tiết
NQ
Xem chi tiết
PS
Xem chi tiết
CT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết