a: Xét tứ giác ABDC có
E là trung điểm của BC
E là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
a: Xét tứ giác ABDC có
E là trung điểm của BC
E là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC. Gọi D là điểm đối xứng của A qua M.
a. Chứng minh tứ giác ABDC là hình chữ nhật
b. Gọi H là trung điểm của AB, N là điểm đối xứng của M qua H. Chứng minh tứ giác ACMN là hình bình hành
c. Chứng minh tứ giác AMBN là hình thoi
d. Vẽ DK vuông góc với BC tại K. Gọi I, J lần lượt là trung điểm của BK, AC. Đường thẳng vuông góc với DI tại I cắt BD tại Q. Chứng minh : Q, I, J thẳng hàng
Cho tam giác ABC vuông tại A. Gọi D, I lần lượt là trung điểm của các
cạnh BC , AB.
b) Gọi K là điểm đối xứng của A qua D. Chứng minh tứ giác ABKC là hình chữ nhật.
c) Gọi E là điểm đối xứng của K qua C. Chứng minh tứ giác ABCE là hình bình hành.
d) Qua B kẻ đường thẳng vuông góc với BC cắt CA tại H, gọi M là điểm đối xứng của
qua
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
cho tam giác ABC vuông tại A, kề đường trung tuyến AD. gọi N là điểm đối xứng qua A qua D. Gọi E và K là trung điểm qua AB và AC. I là điểm đối xứng qua D qua E.
1 Tứ giác ABDC là hình gì
2 Chứng minh tứ giác AEDK là hình chứ nhật
3 Tứ giác ADBI là hình gì
4 Tìm điều kiện của tam giác ABC để tứ giác AEDK là hình vuông
cho tam giác ABC vuông tại A, kề đường trung tuyến AD. gọi N là điểm đối xứng qua A qua D. Gọi E và K là trung điểm qua AB và AC. I là điểm đối xứng qua D qua E.
1 Tứ giác ABDC là hình gì
2 Chứng minh tứ giác AEDK là hình chứ nhật
3 Tứ giác ADBI là hình gì
4 Tìm điều kiện của tam giác ABC để tứ giác AEDK là hình vuông
cho tam giác abc vuông tại a m là trung điểm của bc gọi i là điểm đối xứng với m qua ab gọi d là giao điểm của mĩ và ab gọi k là điểm đối xứng với m qua ac gọi e là giao điểm của mk và ac chứng minh a tứ giác adme là hình gì vì sao b tứ giác amck là hình gì vì sao c chứng minh hai điểm i và k đối xứng với nhau qua điểm a d nếu tam giác abc vuông tại a thì các tứ giác adme amck là hình gì vì sao về hình tương ứng
Cho tam giác ABC vuông tại A, đường cao AH. D đối xứng với H qua AB. E đối xứng với H qua AC. Gọi I là giao điểm của AB và DH. K là giao điểm của AC và EH
a) Chứng minh AIHK là hình chữ nhật
b) Chứng minh D, E, A thẳng hàng
c) Gọi m là trung điểm của BC chứng minh AM vuông góc với IK
Cho ΔABC vuông tại A (AB < AC), M là trung điểm của BC. Gọi D là điểm đối xứng của A qua M. a) Chứng minh tứ giác ABDC là hình chữ nhật. b) Gọi I là điểm đối xứng của A qua BC, AI cắt BC tại H. Chứng minh tứ giác BIDC là hình thang cân.