Cho tam giác ABC vuông tại A, AB<AC, đường cao AH.
a) Giả sử BH = 4 cm, CH = 5 cm. Tính độ dài AB và số đo góc B (làm tròn đến độ) b) Trên cạnh AC lấy điểm D (D khác A và C). Gọi K là hình chiếu của A trên BD.
Chứng minh: BK.BD=BH.BC và tam giác BKH đồng dạng với tam giác BCD. c) Chứng minh: 4 điểm A, B, K, H cùng thuộc một đường tròn. Xác định tâm O của đường tròn đó.
d) Gọi M và N lần lượt là hình chiếu của A và B trên HK. E là giao điểm thức hai của đường thẳng AM với (O). Chứng minh BE // MN.
help mik câu C D với :(
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB,AC. Biết AB=4cm, AC=6cm.
a) Chứng minh : AD.AB=AE.AC
b) Tính độ dài AE
c) Kẻ phân giác AI của góc BAC. Tính độ dài HI
d) Đường thẳng vuông góc với DE tại D cắt BC tại M. Chứng minh M là trung điểm của BH
Bài 2 : Cho tam giác ABC vuông ở A. Gỉa sử D là 1 điểm trên cạnh huyền BC và E.F lần lượt là hình chiếu của D lên các cạnh AB, AC. CMR : AE.EB + AF.FC=BD.DC
Cho tam giác ABC vuông tại âkẻ đường cao AH sao cho BH = 9 cm CH= 16 cm a tính độ dài AH AB và CD Gọi D và E lần lượt là hình chiếu vuông góc của H Trên cạnh AB và AC cắt BD tại I Chứng minh rằng góc ADE = góc ACB .c)gọi O là trung điểm của BC , AOcắt DE tại k Chứng minh rằng AH mũ 2 =AK.BC
Cho tam giác ABC vuông tại A, có AC > AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC
a, Chứng minh AD.AB = AE.AC và tam giác ABC đồng dạng với tam giác AED
b, Cho biết BH = 2 cm, HC = 4,5 cm:
i, Tính độ dài đoạn thẳng DE
ii, Tính số đo góc ABC (làm tròn đến độ)
iii, Tính diện tích tam giác ADE
Cho tam giác ABC vuông tại ,Ađường cao .AH Biết rằng 9 ; 16 .BH cm CH cm
a) Tính độ dài .AH
b) Tính số đo góc B, số đo góc C của tam giác ABC.(Kết quả tính làm tròn đến phút).
c) Gọi ,E F lần lượt là hình chiếu vuông góc của H trên , .AB AC Chứng minh 3. ..
Bài 4. Cho tam giác ABC vuông tại A có AB AC , đường cao AH , trung
tuyến AM .
a) (cả hình) Giả sử BH cm;CH cm = = 18 32 . Tính độ dài đoạn thẳng HM .
b) Gọi E và F lần lượt là hình chiếu của điểm H trên cạnh AB và AC . AM
cắt FE tại K . Chứng minh FE vuông góc với AM
Cho tam giác ABC vuông tại A, kể đường cao AH. Biết BH = 2 cm, BC = 8 cm. a)Tính AB. AC và AH b)Tính BAB c)Trên cạnh AC lấy điểm K tùy ý (K khác A và C),gọi D là hình chiếu của A lên BK. Chứng minh AB=BC.sin BDH
Cho ▲ ABC vuông tại A đường cao AH. Biết BH=4cm, CH=9cm. Gọi D,E là hình chiếu của H trên AB và AC. Chứng minh: a) tứ ADHE là hình chữ nhật, so sánh AH và DE b) AD×AB = AE×AC c) tính góc ABC và góc ACB (làm tròn đến độ) d) Gọi M là trung điểm của BC, một góc xAy quay quanh M sao cho Mx cắt AB tại P , My cắt AC tại Q . xác định vị trí của P và Q để PQ có độ dài nhỏ nhất
Câu 4(3,0 điểm) Cho tam giác ABC vuông tại A.
a) Cho AB = 9 cm; AC = 12 cm. Tính cạnh BC và các góc còn lại của tam giác ABC
( Làm tròn đến độ)
b) Gọi H là hình chiếu của A trên BC; E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AH = EF và AE.AB = AF.AC
c) Gọi K là trung điểm của BC, biết AK cắt EF tại I. Chứng tỏ rằng AK vuông góc với EF.
Câu 5 Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB = 3 cm, AC = 4 cm. Tính độ dài các đoạn BC, HB, HC, AH;
2) kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
Chứng minh
3)Chứng minh:
Câu 4(3,0 điểm) Cho tam giác ABC vuông tại A.
a) Cho AB = 9 cm; AC = 12 cm. Tính cạnh BC và các góc còn lại của tam giác ABC
( Làm tròn đến độ)
b) Gọi H là hình chiếu của A trên BC; E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng: AH = EF và AE.AB = AF.AC
c) Gọi K là trung điểm của BC, biết AK cắt EF tại I. Chứng tỏ rằng AK vuông góc với EF.
Câu 5 Cho tam giác ABC vuông tại A có đường cao AH.
1) Cho biết AB = 3 cm, AC = 4 cm. Tính độ dài các đoạn BC, HB, HC, AH;
2) kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB, F thuộc AC).
Chứng minh
3)Chứng minh: