GH

Cho tam giác ABC vuông tại A (AB < AC), đường cao AH, gọi M là trung điểm của AB. Trên tia đối của tia MH lấy điểm D sao cho MD = MH. a) Chứng minh : tứ giác AHBD là hình chữ nhật. b) Gọi E là điểm đối xứng của B qua điểm H. Chứng minh tứ giác ADHE là hình bình hành. c)Gọi N là giao điểm của AH và DE,K là trung điểm AC.Chứng minh MN//BC và 3 điểm M,N,K thẳng hàng

NM
22 tháng 12 2021 lúc 7:22

\(a,\) Vì M là trung điểm AB cà DH nên AHBD là hình bình hành

Mà \(\widehat{AHB}=90^0\) (đường cao AH) nên AHBD là hcn

\(b,\) Vì AHBD là hcn nên \(AD=BH;AD\text{//}HB\)

Mà \(BH=HE\Rightarrow AD=HE;AD\text{//}HE\)

Do đó: ADHE là hình bình hành

\(c,\) Vì ADHE là hbh mà N là giao AH và DE nên N là trung điểm AH và DE

Mà M là trung điểm AB nên MN là đtb \(\Delta ABH\)

Do đó \(MN//BH\) hay \(MN//BC\)

Ta có N là trung điểm AH và K là trung điểm AC nên NK là đtb \(\Delta ACH\)

Do đó \(NK//HC\) hay \(NK//BC\)

Do đó theo định lí Ta lét thì MN trùng NK hay M,N,K thẳng hàng

Bình luận (0)
NT
22 tháng 12 2021 lúc 7:01

a: Xét tứ giác AHBD có

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
BT
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
DX
Xem chi tiết
IA
Xem chi tiết
CL
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết