ND

Cho tam giác ABC vuông tại A. AB = 8, AC = 15. Đường cao AH. D đối xứng với B qua H. Vẽ đường tròn đường kính CD cắt AC tại E.

HE là tiếp tuyến đường tròn đó

NT
6 tháng 12 2023 lúc 20:31

Gọi M là trung điểm của CD

=>M là tâm của đường tròn đường kính CD

=>E thuộc (M)

Xét (M) có

ΔCED nội tiếp

CD là đường kính

Do đó: ΔCED vuông tại E

=>DE\(\perp\)EC tại E

=>DE\(\perp\)AC tại E

Xét ΔABD có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔABD cân tại A

TA có: ΔABD cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAD

=>\(\widehat{BAH}=\widehat{DAH}\)

Xét tứ giác AHDE có

\(\widehat{AHD}+\widehat{AED}=90^0+90^0=180^0\)

=>AHDE là tứ giác nội tiếp

=>\(\widehat{DEH}=\widehat{DAH}\)

mà \(\widehat{DAH}=\widehat{BAH}\)

nên \(\widehat{DEH}=\widehat{BAH}\)

mà \(\widehat{BAH}=\widehat{C}\left(=90^0-\widehat{ABC}\right)\)

nên \(\widehat{DEH}=\widehat{C}\)

Ta có: ME=MD

=>ΔMED cân tại M

=>\(\widehat{MED}=\widehat{MDE}\)

=>\(\widehat{MED}=\widehat{CDE}\)

\(\widehat{HEM}=\widehat{HED}+\widehat{MED}\)

\(=\widehat{CDE}+\widehat{C}\)

\(=90^0\)

=>HE\(\perp\)EM tại E

Xét (M) có

ME là bán kính

HE\(\perp\)ME tại E

Do đó: HE là tiếp tuyến của (M)

Bình luận (0)

Các câu hỏi tương tự
CD
Xem chi tiết
ND
Xem chi tiết
NM
Xem chi tiết
HT
Xem chi tiết
NA
Xem chi tiết
GH
Xem chi tiết
TT
Xem chi tiết
TH
Xem chi tiết
NN
Xem chi tiết