PD

 Cho tam giác ABC vuông tại A. a) Nếu AB = 9cm; BC = 15 cm. Tính AC. b) Trên tia đối của tia CA lấy điểm D sao cho CA = CD, qua D kẻ đường thẳng d vuông góc với AD. Gọi E là giao điểm của BC và d. Qua C kẻ đường thẳng vuông góc với BE cắt đường thẳng d tại F. Chứng minh rằng: ∆𝐴𝐵𝐶 = ∆𝐷𝐸𝐶 và tam giác BEF là tam giác cân c) So sánh BF và AD. d) Tìm điều kiện của tam giác ABC để tam giác EFB là tam giác đều

NT
6 tháng 1 2024 lúc 13:09

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=15^2-9^2=144\)

=>\(AC=\sqrt{144}=12\left(cm\right)\)

b: Xét ΔCAB vuông tại A và ΔCDE vuông tại D có

CA=CD

\(\widehat{ACB}=\widehat{DCE}\)(hai góc đối đỉnh)

Do đó: ΔCAB=ΔCDE

=>CB=CE

=>C là trung điểm của BE

Xét ΔFBE có

FC là đường cao

FC là đường trung tuyến

Do đó: ΔFBE cân tại F

 

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
VM
Xem chi tiết
TH
Xem chi tiết
H24
Xem chi tiết
TD
Xem chi tiết
CH
Xem chi tiết
ST
Xem chi tiết