a) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
hay \(AH\cdot AH=BH\cdot CH\)
Ta có: \(S_{BAC}=\dfrac{AH\cdot BC}{2}\)(AH là đường cao ứng với cạnh BC)
mà \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(ΔABC vuông tại A)
nên \(AH\cdot BC=AB\cdot AC\)