H24

Cho tam giác ABC vuông ở A có: Ab=8cm, BC=10cm. Trung tuyến AD cắt trung tuyến BE ở G
a, Tính Ac và AE
b, Tính Be và BG
c, Kéo Dài CG cắt AB tại K. Tính Ck

NT
24 tháng 7 2021 lúc 19:58

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=10^2-8^2=36\)

hay AC=6(cm)

Ta có: E là trung điểm của AC(gt)

nên \(AE=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABE vuông tại A, ta được:

\(BE^2=AB^2+AE^2\)

\(\Leftrightarrow BE^2=8^2+3^2=73\)

hay \(BE=\sqrt{73}\left(cm\right)\)

Xét ΔABC có 

BE là đường trung tuyến ứng với cạnh AC(gt)

AD là đường trung tuyến ứng với cạnh BC(gt)

BE cắt AD tại G

Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)

Suy ra: \(BG=\dfrac{2}{3}BE=\dfrac{2}{3}\cdot\sqrt{73}=\dfrac{2\sqrt{73}}{3}\left(cm\right)\)

Bình luận (0)