H24

Cho tam giác ABC vuông ở A có: Ab=8cm, BC=10cm. Trung tuyến AD cắt trung tuyến BE ở G
a, Tính Ac và AE
b, Tính Be và BG
c, Kéo Dài CG cắt AB tại K. Tính Ck

NT
24 tháng 7 2021 lúc 19:58

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=10^2-8^2=36\)

hay AC=6(cm)

Ta có: E là trung điểm của AC(gt)

nên \(AE=\dfrac{AC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABE vuông tại A, ta được:

\(BE^2=AB^2+AE^2\)

\(\Leftrightarrow BE^2=8^2+3^2=73\)

hay \(BE=\sqrt{73}\left(cm\right)\)

Xét ΔABC có 

BE là đường trung tuyến ứng với cạnh AC(gt)

AD là đường trung tuyến ứng với cạnh BC(gt)

BE cắt AD tại G

Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)

Suy ra: \(BG=\dfrac{2}{3}BE=\dfrac{2}{3}\cdot\sqrt{73}=\dfrac{2\sqrt{73}}{3}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
HT
Xem chi tiết
Xem chi tiết
PB
Xem chi tiết
PU
Xem chi tiết
TD
Xem chi tiết
WF
Xem chi tiết
NP
Xem chi tiết
NT
Xem chi tiết