TQ

Cho tam giác ABC vuông ở A, AB < AC, trung tuyến AM. Gọi O là trung điểm của AM. Lấy Đ đối xứng với B qua O. a) Chứng minh tứ giác ABMD là hình bình hành. b) Chứng minh tứ giác AMCD là hình thoi. c) Kẻ AH vuông góc với BC. Gọi K là giao điểm của DM với AC, N là trung điểm của AB. Chứng minh tứ giác NHMK là hình thang cân, d) Chứng minh NHK = 90°, e) Cho AB = 6cm, BC =10 cm. Tính diện tích các tứ giác ABMD, AMCD.

NT
18 tháng 12 2023 lúc 17:32

a: Xét tứ giác ABMD có

O là trung điểm chung của AM và BD

=>ABMD là hình bình hành

b: ta có:ABMD là hình bình hành

=>AD//MB và AD=MB

Ta có: AD//MB

M\(\in\)BC

Do đó: AD//CM

Ta có: AD=MB

MC=MB

Do đó: AD=MC

Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(MA=MB=MC=\dfrac{BC}{2}\)

Xét tứ giác AMCD có

AD//CM

AD=CM

Do đó:AMCD là hình bình hành

Hình bình hành AMCD có MA=MC

nên AMCD là hình thoi

c: Ta có: AMCD là hình thoi

=>AC vuông góc với DM tại trung điểm của mỗi đường

=>AC\(\perp\)DM tại K và K là trung điểm chung của AC và DM

Xét ΔABC có

N,K lần lượt là trung điểm của AB,AC

=>NK là đường trung bình của ΔABC

=>NK//BC 

=>NK//MH

Xét ΔABC có

M,N lần lượt là trung điểm của BC,BA

=>MN là đường trung bình của ΔABC

=>MN//AC và \(MN=\dfrac{AC}{2}\)

Ta có: ΔHAC vuông tại H

mà HK là đường trung tuyến

nên \(HK=\dfrac{AC}{2}\)

=>MN=HK

Xét tứ giác MHNK có MH//NK và MN=HK

nên MHNK là hình thang cân

d: 

Ta có: ΔHAC vuông tại H

mà HK là đường trung tuyến

nên \(KA=KH=KC=\dfrac{AC}{2}\)

Ta có: ΔHAB vuông tại H

mà HN là đường trung tuyến

nên \(HN=AN=NB=\dfrac{AB}{2}\)

Xét ΔKAN và ΔKHN có

KA=KH

AN=HN

KN chung

Do đó: ΔKAN=ΔKHN

=>\(\widehat{KAN}=\widehat{KHN}=90^0\)

Bình luận (0)