TQ

Cho tam giác ABC vuông ở A, AB = 5cm, BC = 13cm. Vẽ đường trung tuyến AM. Gọi I là trung điểm của AM, tia BI cắt AC tại D. Gọi N là trung điểm của DC. a) Chứng minh BD = 2MN. b) Chứng minh D là trung điểm của AN. c) Tính AC, BD. d) Tính BI.

NT
27 tháng 11 2023 lúc 19:36

a: Xét ΔCDB có

M,N lần lượt là trung điểm của CB,CD

=>MN là đường trung bình của ΔCDB

=>MN//BD và \(MN=\dfrac{BD}{2}\)

\(NM=\dfrac{BD}{2}\)

nên BD=2MN

b: NM//BD

=>ID//NM

Xét ΔANM có

I là trung điểm của AM

ID//NM

Do đó: D là trung điểm của AN

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+5^2=13^2\)

=>\(AC^2=169-25=144\)

=>AC=12(cm)

D là trung điểm của AN

nên \(AD=DN=\dfrac{AN}{2}\)

N là trung điểm của DC

nên \(DN=CN=\dfrac{DC}{2}\)

=>\(AD=DN=CN=\dfrac{AC}{3}=4\left(cm\right)\)

ΔABD vuông tại A

=>\(AB^2+AD^2=BD^2\)

=>\(BD^2=4^2+5^2=41\)

=>\(BD=\sqrt{41}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
TV
Xem chi tiết
NC
Xem chi tiết
S2
Xem chi tiết
NT
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết