PB

Cho tam giác ABC vuông cân tại A, AC = 4cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ M đến AB, AC. Điểm M ở vị trí nào trên BC thì đoạn DE có độ dài nhỏ nhất.

CT
19 tháng 1 2018 lúc 3:11

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi H là trung điểm của BC

Suy ra: AH ⊥ BC (tính chất tam giác cân)

Do đó, AM  ≥  AH ( quan hệ đường vuông góc và đường xiên )(dấu " = " xảy ra khi M trùng với H)

Tứ giác ADME là hình chữ nhật .

⇒ AM = DE (tính chất hình chữ nhật)

Suy ra: DE ≥ AH

 

Vậy DE có độ dài nhỏ nhất là AH khi và chỉ khi điểm M là trung điểm của BC.

Bình luận (0)

Các câu hỏi tương tự
GP
Xem chi tiết
HY
Xem chi tiết
PB
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết
T8
Xem chi tiết
PV
Xem chi tiết
HC
Xem chi tiết
NA
Xem chi tiết