a: Xét ΔBMC có
N,K lần lượt là trung điểm của BM và BC
nên NK là đường trung bình
b: Xét ΔANK có
M là trung điểm của AN
MH//NK
DO đó: H là trung điểm của AK
c: MH=1/2NK
NK=1/2MC
Do đó: MH=1/4MC
=>MH=1/3HC
a: Xét ΔBMC có
N,K lần lượt là trung điểm của BM và BC
nên NK là đường trung bình
b: Xét ΔANK có
M là trung điểm của AN
MH//NK
DO đó: H là trung điểm của AK
c: MH=1/2NK
NK=1/2MC
Do đó: MH=1/4MC
=>MH=1/3HC
Bài 2. Cho tam giác ABC vẽ trung tuyến AK , K thuộc BC . Trên cạnh AB lấy các điểm M , N sao cho AM = MN = NB . Gọi H là giao điểm của AK và MC . Chứng minh : a ) NK là đường trung bình của AMBC . b ) AH = HK . c ) MH = 1/3 HC
cho tam giác abc, trên cạnh ab lấy điểm m và n sao cho am = mn = nb. gọi k là trung điểm của bc; i là giao điểm của mc và ak. chứng minh mi // nk ,ai=ik ,cho mc=16cm tính mi
Bài 1
Cho tam giác ABC. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Gọi H là chân đường vuông góc kể từ B đến AD, K là chân đường vuông góc kẻ từ C đến AE
a) Chứng minh rằng HK song song
với DE
b) Tính HK, biết chu vi tam giác ABC bằng 10 cm
Bài 2 Cho tam giác ABC, đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AN = AM. Gọi K là giao điểm của CA và NB. Chứng minh NK = 1/2 KB
Bài 3 Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH, E là giao điểm của BI và AC. Tính các độ dài AE và EC, biết AH = 12 cm, BC = 18 cm
Cho DABC có AB = 9cm; AC = 12cm. Trên cạnh AB lấy điểm H và trên cạnh AC lấy điểm K sao cho AH = 6cm; AK = 8cm. a/Cm:HK // BC. b/Cho biết BC = 18cm. Tính HK? c/ Kẻ trung tuyến AM của tam giác ABC ( M thuộc BC). AM cắt HK tại I. Chứng minh rằng I là trung điểm HK.
Cho tam giác abc có ab=9cm ,ac=12cm. Trên cạnh ab lấy điểm H trên cạnh ac lấy điểm K sao cho ah=6cm, ak=8cm
a) cm hk//bc
b)cho biết bc=18cm, Tính HK
c) kẻ trung tuyến am của tam giác abc (M thuộc bc) am cắt hk tại i. Cm i là trung điểm hk
giải với vẽ hình cho mình với
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Bài 1: Cho tam giác ABC, có đường trung tuyến AM. Trên tia đối của tia AM lấy điểm N sao cho AM=AN. Gọi K là giao điểm của CA và NB. Chứng minh: NK= 1/2KB
Bài 2: Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH, E là giao điểm của BI và AC. Tính các độ dài AE và EC, biết AH= 12cm, BC= 18cm
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Từ H kẻ HM vuông góc với AB tại H, HN vuông góc với AC tại N. Gọi I là trung điểm HC, vẽ K đối xứng với A qua I. a,chứng minh AK = MC. b, gọi O là giao điểm của AH và MN , D là giao điểm của AK và CO . từ I kẻ IE // CK(E thuộc AC). chứng minh 3 điểm H,D,E thẳng hàng
cho tam giác abc có ab= ac , trên cạnh ab lấy điểm m , trên cạnh ac lấy điểm n sao cho am=an. gọi h là trung điểm của bc
a, chứng minh góc abh = ach
b, gọi e là giao điểm của ah và nm . chứng minh tam giác ame = tam giác ane
c, chứng minh mn // bc