\(VT=AB^2+CD^2\)
\(=BH^2+HA^2+HC^2+HD^2\)
\(=HA^2+HD^2+HC^2+HB^2\)
\(=AD^2+BC^2=VP\left(đpcm\right)\)
\(VT=AB^2+CD^2\)
\(=BH^2+HA^2+HC^2+HD^2\)
\(=HA^2+HD^2+HC^2+HB^2\)
\(=AD^2+BC^2=VP\left(đpcm\right)\)
cho tam giác ABC vuông tại B (AB>BC) . Biết AB=8cm,AC=10cm. Gọi M là Trung điểm của cạnh AC trên tia đối của tia MB lấy D sao cho MD=MB vẽ vuông góc AC tại H. Trên tia đối của tia HB lấy điểm E sao cho HE=HB.
Chứng minh rằng
1)CD vuông góc với BC
2)Tính BC?
3)Tam giác CBE cân
4)AD=CE
5)BE vuông góc với ED
cho tam giác ABC cân tại B, vẽ BH vuông góc với AC tại H. biết AB=4cm;BH=3cm
a. tính độ dài BH
b. chứng minh AH=HC
c. trên tia đối của HB lấy điểm D sao cho HB=HD, chứng minh AB//CD
2/ Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm
a/ Tính độ dài BC.
b/ Vẽ AH vuông góc với BC ( H thuộc BC ). Trên đoạn BC Lấy điểm D sao cho HD = HB. Chứng minh AB = AD.
c/ Trên tia đối tia HA lấy điểm E sao cho EH = AH. Chứng minh ED vuông góc với AC.
d/ Chứng minh BD < AE.
Bài 1: Cgo tam giác ABC, trên các tia đối của các tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB, AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trrung điểm của MN
Bài 2: Cho góc nhọn xOy, trên tia Ox lấy 2 điểm A và B sao cho OA<OB. Trên tia Oy lấy 2 điểm C và D sao cho OC = OB, OD = OA. Hai đoạn thẳng AC và BD cắt nhau tại E. Chứng minh tam giác EAB = tam giác EDC
Bài 3: Cho tam giác ABC, AB<AC. Gọi M là trung điểm của BC. Vẽ BH vuông góc với AM, CK vuông góc với AM. Chứng minh rằng BH = CK
Bài 1: Cgo tam giác ABC, trên các tia đối của các tia AB, AC lần lượt lấy các điểm D và E sao cho AD = AB, AE = AC. Gọi M, N lần lượt là trung điểm của BC và DE. Chứng minh A là trrung điểm của MN
Bài 2: Cho góc nhọn xOy, trên tia Ox lấy 2 điểm A và B sao cho OA<OB. Trên tia Oy lấy 2 điểm C và D sao cho OC = OB, OD = OA. Hai đoạn thẳng AC và BD cắt nhau tại E. Chứng minh tam giác EAB = tam giác EDC
Bài 3: Cho tam giác ABC, AB<AC. Gọi M là trung điểm của BC. Vẽ BH vuông góc với AM, CK vuông góc với AM. Chứng minh rằng BH = CK
1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA
a) Chứng minh: Tam giác OAH = tam giác OBH
b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN
c) Chứng minh AB vuông góc với OH
d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot
2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)
a) Chứng minh góc ABH = góc ACK
b) BH cắt CK tại E. Chứng minh AE vuông góc BC
c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?
3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a) Chứng minh: Tam giác AMB = tam giác DMC
b) Chứng minh: AC = BD và AC //BD
c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC
4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ
a) Tính số đo góc ACB
b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC
c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE
Cho tam giác ABC (AB=AC). Trên tia đối của tia CB lấy điểm D sao cho CD=AB. Trên tia đối của tia BA lấy điểm E sao cho BE=BH (H thuộc BC, HB=HC). Đường thẳng EH cắt AD tại F. Chứng minh:
a) Góc ADB=\(\frac{1}{2}\)góc ABC
b) EA=HD
c) FA=FH=FD
Cho tam giác ABC có góc A = 90 độ ( AB < AC ), kẻ AH vuông góc với BC ( H thuộc BC ). Trên BC lấy I sao cho HI = HB. Trên tia đối của tia HA lấy K sao cho HK = HA.
a) Chứng minh: tam giác ABH = tam giác KIH.
b) Chứng minh: AB // KI.
c) Vẽ IE vuông góc với AC tại E. Chứng minh: K, I, E thẳng hàng.
d) Trên tia đối của tia IA lấy D sao cho ID = IA. CMR: KT = \(\frac{1}{2}\)AD.
Cho tam giác ABC vuông tại A có AB=6 cm ; AC= 8cm
a) Tính độ dài đoạn BC .
b) Vẽ AH vuông góc BC tại H . Trên HC lấy D sao cho HD= HB . Chứng minh AB =AD .
c) Trên tia đối của tia HA lấy điểm E sao cho EH= AH . Chứng minh ED vuông góc AC