TM

Cho tam giác \(ABC\), trung tuyến \(AM\). Điểm \(E\) bất kì thỏa mãn \(2\overrightarrow{EA}+\overrightarrow{EC}=\overrightarrow{0}\). Đường thẳng \(d\) qua \(E\) song song với \(AB\) cắt \(AM,BC\) lần lượt tại \(D,F\)\(G\) nằm trên cạnh \(AB\) sao cho diện tích hai tam giác \(BFG,ADE\) bằng nhau. Biết \(\overrightarrow{AG}=k\overrightarrow{AB}\). Tìm giá trị \(k\).

A. \(k=\dfrac{1}{3}\)

B. \(k=\dfrac{1}{2}\)

C. \(k=\dfrac{1}{4}\)

D. \(k=\dfrac{2}{3}\)

(Giải chi tiết giúp em ạ, em cảm ơn)

TC
20 tháng 7 2023 lúc 12:23

Bài này có nhiều cách làm, vẽ thêm đường phụ cũng được, dùng định lý Menelaus cũng được nhưng lớp 10 thì nên dùng vecto

Ta có:

\(k=\dfrac{AG}{AB}=1-\dfrac{BG}{AB}=1-\dfrac{DE}{AB}=1-\dfrac{2DE}{3EF}\)

Đặt \(\dfrac{AD}{AM}=m\)

\(\Rightarrow\overrightarrow{ED}=m\overrightarrow{EM}+\left(1-m\right)\overrightarrow{EA}\)

\(=m\left(\overrightarrow{EC}+\overrightarrow{CM}\right)+\dfrac{1}{3}\left(m-1\right)\overrightarrow{AC}\)

\(=\dfrac{2}{3}m\overrightarrow{AC}+\dfrac{1}{2}m\overrightarrow{CB}+\dfrac{1}{3}\left(m-1\right)\overrightarrow{AC}\)

\(=\left(m-\dfrac{1}{3}\right)\overrightarrow{AC}+\dfrac{1}{2}m\overrightarrow{CB}\)

Lại có: \(\overrightarrow{EF}=\dfrac{2}{3}\overrightarrow{AB}=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{CB}\)

Mà \(D,E,F\) thẳng hàng nên:

\(\left(m-\dfrac{1}{3}\right)\dfrac{2}{3}=\dfrac{1}{2}m.\dfrac{2}{3}\Leftrightarrow m=\dfrac{2}{3}\)

\(\Rightarrow\overrightarrow{ED}=\dfrac{1}{2}\overrightarrow{EF}\Rightarrow ED=\dfrac{1}{2}EF\)\(\Leftrightarrow\dfrac{DE}{EF}=\dfrac{1}{2}\)

\(\Rightarrow k=\dfrac{2}{3}\)

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
CH
Xem chi tiết
MD
Xem chi tiết
NQ
Xem chi tiết
PP
Xem chi tiết
TD
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết
MH
Xem chi tiết