Cho tam giác ABC. AM là trung tuyến, phân giác của \(\widehat{BMA}\), \(\widehat{CMA}\)lần lượt cắt AB, Ac tại D và E a.CM: DE//BC
b. AM cắt DE tại O. Cm: OD=OE
Cho \(\Delta ABC\), đường trung tuyến AM. Tia phân giác \(\widehat{AMB}\) cắt AB tại D, tia phân giác \(\widehat{AMC}\) cắt AC tại E. Gọi I là giao điểm của AM và DE. Hỏi \(\Delta ABC\) cần có điều kiện gì để DE là đường trung bình của \(\Delta ABC\)?
Cho ( O;R ) đường kính AB. Trên (O) lấy điểm C sao cho dây AC<dây CB. Gọi H là trung điểm của AC. Kẻ CK vuông góc với AB tại K thuộc AB.
a/ Cho AC=8cm; CB=5cm. CM: tam giác ACB vuông, tính CK và góc CAB ( góc làm tròn đến độ )
b/ Tiếp tuyến tại C của đtr(O) cắt tia OH tại M. CM: OH//BC và MA là tiếp tuyến của (O)
c/ Gọi I là trung điểm của CK. CM: IK = R.sinB.cosB
d/ CM: 3 điểm M,I,B thẳng hàng
cho tam giác nhọn ABC. Đường tròn tâm O đường kính BC cắt các cạnh AB,AC lần lượt tại các điểm M,N . Gọi H là gia điểm BN, CM; P là giao điểm AH và BC
1. Chứng minh tứ giác AMHN nội tiếp đường tròn
2. Chứng minh BM.BA=BP.BC
3. Trong trường hợp đặc biệt khi tam giác ABC đều cạnh bằng 2a. Tính chu vi đường tròn ngoại tiếp tứ giác AMHN theo a
4. Từ A kẻ các tiếp tuyển AE và AF của đường tròn tâm O đường kính BC ( E,F là các tiếp điểm). Chứng minh ba điểm E,H,F thằng hàng
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn C tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC)
1. Chứng minh tg AEBK nội tiếp đường tròn
2. Chứng minh CE.CB=CK.CA
3. Chứng minh góc OCA = góc BAE
Bài 1: Cho tam giác ABC vuông tại A có đường cao AH, trung tuyến BM, phân giác CD đồng quy tại O. Tính tỉ lệ AB/AC.
Bài 2: Cho hình vuông ABCD. O là giao của AC và BD. M là điểm bất kì nằm trên tia đối của tia CB. AM cắt CD tại E. OM cắt BE tại I. Chứng minh rằng ∠OIB=45 độ.
Bài 3: Cho tam giác ABC có trực tâm H, tâm đường tròn ngoại tiếp O. Qua O kẻ đường thẳng song song với BC cắt AC, AB lần lượt tại E, F. Gọi I là trung điểm AH. Chứng minh rằng ∠BIE=∠CIF=90 độ.
1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB
2. Cho (O) và đường thẳng d không cắt (O). Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh ΔOMN cân
cho tam giác ABC có trung tuyến AK. Một đường thẳng song song với BC vá cắt AB và AK và AC lấn lượt tại M, I và N
a) chứng minh MI=NI
b)các tia phân giác của góc AIM,AIN cắt AB và AC lần lượt tại D và E. Chứng minh DE song song với BC
c) gọi O là giao điểm của BE và CD. Chứng minh rằng 3 điểm A,O,K thẳng hàng
Bài 1: Tam giác ABC. Trung tuyến AM, tia phân giác AMB và AMC cắt AB, AC tại D và E.
a) CMR: DE//BC
b) BC=a; AM=m. Tính DE
c) I là giao điểm của AM và DE. I chuyển động trên đường nào nếu tam giác ABC có BC cố định và trung tuyến AM=m không đổi.
d) Tam giác ABC cần điều kiện gì để DE là đường trung bình tam giác.
Cho tam giác vuông ABC, \(\widehat{A}=90^o\), \(AH\perp BC\) tại H. \(HD\perp AC\) tại D và \(HE\perp AB\) tại E. M là trung điểm của HC
a) Chứng minh tứ giác AEHD là HCN
b) N là trung điểm của AE, O là giao điểm của AH và DE. Chứng minh M, O, N thẳng hàng
c) Chứng minh \(\Delta MDE\) là tam giác vuông
(answer hết mk sẽ đánh dấu like)