BT

cho tam giác abc  nội tiếp đường tròn (O;R) bán kính R trong đó B,C cố đinhj chứng minh rằng trọng tâm g của tam giác luôn thuộc một ddường tròn cố định

 

AH
29 tháng 7 2021 lúc 23:18

Lời giải:
Gọi $M$ là trung điểm của $BC$. Do $BC$ cố định nên $M$ cố định.

Qua $G$ kẻ $GI\parallel AO$ với $I\in OM$

Theo Talet thì $\frac{GI}{AO}=\frac{MI}{MO}=\frac{GM}{MA}=\frac{1}{3}$
Mà $M,O$ cố định nên $I$ cố định.

$\frac{GI}{AO}=\frac{1}{3}\Rightarrow GI=\frac{AO}{3}=\frac{R}{3}$

Vậy trọng tâm $G$ luôn thuộc đường tròn $(I, \frac{R}{3})$ cố định.

 

Bình luận (0)
AH
29 tháng 7 2021 lúc 23:24

Hình vẽ:

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DQ
Xem chi tiết
VG
Xem chi tiết
H24
Xem chi tiết
NG
Xem chi tiết
HA
Xem chi tiết
NB
Xem chi tiết