a: Xét ΔACD có AC=AD
nên ΔACD cân tại A
Xét ΔABE có AB=AE
nên ΔABE cân tại A
b: Xét ΔABC và ΔAED có
AB=AE
\(\widehat{BAC}=\widehat{EAD}\)
AC=AD
Do đó: ΔABC=ΔAED
Suy ra: BC=ED
c: Ta có: ΔABE cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a: Xét ΔACD có AC=AD
nên ΔACD cân tại A
Xét ΔABE có AB=AE
nên ΔABE cân tại A
b: Xét ΔABC và ΔAED có
AB=AE
\(\widehat{BAC}=\widehat{EAD}\)
AC=AD
Do đó: ΔABC=ΔAED
Suy ra: BC=ED
c: Ta có: ΔABE cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Cho tam giác ABC nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối của tia AC lấy điểm E sao cho AE = AB.
a) So sánh BC và DE
b) Tam giác ABE là tam giác gì? Vì sao
c) Chứng minh: BE // CD
d) Gọi M là trung điểm của BE. Chứng minh: AM vuông góc BE
Cho tam giác nhọn ABC. Trên tia đối tia AB lấy điểm D soa cho AD=AC, trên tia đối của tia AC lấy ddieemrE sao cho AE=AB.
a)Tam giác ACD và tam giác ABE là tam giác gì?
b) Chứng minh CD song song BE
c) Gọi M là trung điểm của BE. Chứng minh AM vuông góc BE
d)Kéo dài MA cắt CD ở N. Tính số đo góc ANC
cho tam giác ABC là tam giác nhọn, trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC
a. chứng minh BE=CD
b. chứng minh BE//CD
c. gọi M là trung điểm BE và N là trung điểm CD. chứng minh AM=AN
Cho tam giác nhọn ABC. Trên tia đối tia AB lấy điểm D soa cho AD=AC, trên tia đối của tia AC lấy ddieemrE sao cho AE=AB.
a)Tam giác ACD và tam giác ABE là tam giác gì?
b) Chứng minh CD song song BE
c) Gọi M là trung điểm của BE. Chứng minh AM vuông góc BE
d)Kéo dài MA cắt CD ở N. Tính số đo góc ANC
Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC. a) Chứng minh BE = CD, BE // CD. b) Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh AM = AN
Bài 2: Cho tam giác ABC. Trên tia đối của tia AB lấy D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE = AC. a) Chứng minh rằng : BE = CD. b) Chứng minh: BE // CD. c) Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh: AM=AN.
Cho tam giác ABC. TRÊN TIA ĐỐI của tia AB lấy D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC.
a) Chứng minh: BE=CD
b) chứng minh: BE//CD
c) gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh: AM=AN
\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b) ABC = KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có B = C , kẻ AH BC, H BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK AD, CI AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)
Cho tam giác ABC có 3 góc đều nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên tia đối của tia AC lấy điểm E sao cho AE = AC.
a/ Chứng minh : tam giác ABC = tam giác ADE.
b/ Chứng minh : BE // CD.
c/ Gọi H là trung điểm của BC và K là trung điểm của DE. Chứng minh A là trung điểm của Hk.