cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(o). hai đường cao CE và AD cắt nhau tại H. Tia BO cắt (o) tại M, gọi I là giao điểm của BM và DE, K là giao điểm của AC và HM. Chứng minh CMID nội tiếp đường tròn
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. 3 đường cao AK, BD, CE cắt nhau tại H. Gọi I,J lần lượt là trung điểm của DE và BC. Chứng minh rằng OA // JI
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R) và hai đường cao BF,CE cắt nhau tại H . Gọi D là điểm đối xứng với H qua trung điểm K của BC
1) Chứng minh: tứ giác BHCD là hình bình hành
2) Đường thẳng qua D và song song với BC cắt đường thẳng AH tại M. Chứng minh rằng: năm điểm A, B ,C , D , M cùng thuộc một đường tròn.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn(O). Hai đường cao AD và CE cắt nhau tại H. Tia BO cắt (O) tại M, gọi I là giao điểm của BM và DE, K là giao điểm của AC và HM a) Chứng minh các tứ giác AEDC và CMID nội tiếp b) Chứng minh OK vuông góc với AC c) Cho góc AOK=60. Chứng minh tam giác HBO cân
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R), hai đường cao BE và CF của tam giác cắt nhau tại H. Kẻ đường kính AK của đường tròn (O; R), gọi I là trung điểm của BC.
a) Chứng minh AH = 2.IO.
b) Biết góc BAC = 60o, tính độ dài dây BC theo R.
cho tam giác ABC nội tiếp đường tròn (O). hai đường cao BD và CE cắt nhau tại H AH cắt BC và (O) lần lượt tại F và K
b) gọi J là giao điểm của BK và (O) chứng minh góc BJK bằng góc BDE
c) gọi L là chân đường vuoogn góc hạ từ đỉnh D xuống AB, I là giao điểm của ED và BJ chứng minh ALIJ là tứ giác nội tiếp và I là trung điểm ED
Cho tam giác ABC nhọn (AB < AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE . Tia AH cắt BC tại F.
a) Chứng minh: HB . HD = HC . HE và AF vuông góc với BC.
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF là tứ giác nội tiếp.
c) Đoạn thẳng DF cắt CE tại N . Qua N vẽ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K . Chứng minh N là trung điểm của IK
cho tam giác ABC nhọn , AB<AC nội tiếp đường tròn (O). Các đường cao BD và CE của tam giác ABC cắt nhau tại H. Gọi K là giao điểm của DE và CB.
a)CMR: Tứ giác BCDE nội tiếp
b) C/m : KB.KC=KE.KD
c) Gọi M là trung điểm của BC , AK cắt đường tròn (O) tại điểm thứ 2 N . C/m : 3 điểm M,H,N thẳng hàng
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Hai đường cao AD và CE cắt nhau tại H. Tia BO cắt (O) tại điểm thứ hai M. I là giao điểm của BM và DE
a) Chứng minh tứ giác AEDC là tứ giác nội tiếp