DT

Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn(O). Hai đường cao AD và CE cắt nhau tại H. Tia BO cắt (O) tại M, gọi I là giao điểm của BM và DE, K là giao điểm của AC và HM a) Chứng minh các tứ giác AEDC và CMID nội tiếp b) Chứng minh OK vuông góc với AC  c) Cho góc AOK=60. Chứng minh tam giác HBO cân

NT
1 tháng 4 2021 lúc 21:46

a) Xét tứ giác AEDC có 

\(\widehat{AEC}=\widehat{ADC}\left(=90^0\right)\)

\(\widehat{AEC}\) và \(\widehat{ADC}\) là hai góc cùng nhìn cạnh AC

Do đó: AEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Bình luận (0)

Các câu hỏi tương tự
LN
Xem chi tiết
LH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
HM
Xem chi tiết
MT
Xem chi tiết
PN
Xem chi tiết
TV
Xem chi tiết