H24

Cho tam giác ABC nhọn nội tiếp đường tròn (O;R), đường kính AD, H là trực tâm tam giác ABC, M là trung điểm BC, G là trọng tâm tam giác ABC

a, CMR AB vuông góc với BD, tứ giác BHCD là hình bình hành

b, CNR H,G,O thẳng hàng 

c, TÌm GTLN của AH+BC theo R

NT
10 tháng 12 2021 lúc 21:46

a: Xét tứ giác BHCD có 

M là trung điểm của BC

M là trung điểm của HD

Do đó: BHCD là hình bình hành

Bình luận (1)
NM
10 tháng 12 2021 lúc 22:01

\(b,\) Kẻ \(OM\perp BC;ON\perp AC\)

\(\Rightarrow BM=MC;AN=NC\Rightarrow MN\) là đtb \(\Delta ABC\)

\(\Rightarrow MN\text{//}AB\Rightarrow\widehat{NMC}=\widehat{ABC};\widehat{MNC}=\widehat{ACB}\)

Mà \(\left\{{}\begin{matrix}\widehat{OMN}+\widehat{NMC}=90^0;\widehat{HAB}+\widehat{ABC}=90^0\\\widehat{ONM}+\widehat{MNC}=90^0;\widehat{ABH}+\widehat{ACB}=90^0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{OMN}=\widehat{HAB}\\\widehat{ONM}=\widehat{ABH}\end{matrix}\right.\)

\(\Rightarrow\Delta OMN\sim\Delta HAB\left(g.g\right)\\ \Rightarrow\dfrac{OM}{AH}=\dfrac{MN}{AB}=\dfrac{1}{2}\)

Gọi \(AM\cap OH=\left\{G'\right\}\)

\(OM\text{//}AH\Rightarrow\dfrac{G'M}{G'A}=\dfrac{OM}{AH}=\dfrac{1}{2}\Rightarrow G'\) là trọng tâm \(\Delta ABC\)

Do đó \(G'\equiv G\) hay \(H,G,O\) thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
NK
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
DS
Xem chi tiết
9D
Xem chi tiết
PN
Xem chi tiết
LL
Xem chi tiết
HP
Xem chi tiết
TB
Xem chi tiết