Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
cho tam giác nhọn ABC. Đường tròn tâm O đường kính BC cắt các cạnh AB,AC lần lượt tại các điểm M,N . Gọi H là gia điểm BN, CM; P là giao điểm AH và BC
1. Chứng minh tứ giác AMHN nội tiếp đường tròn
2. Chứng minh BM.BA=BP.BC
3. Trong trường hợp đặc biệt khi tam giác ABC đều cạnh bằng 2a. Tính chu vi đường tròn ngoại tiếp tứ giác AMHN theo a
4. Từ A kẻ các tiếp tuyển AE và AF của đường tròn tâm O đường kính BC ( E,F là các tiếp điểm). Chứng minh ba điểm E,H,F thằng hàng
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn C tâm O bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H ( với E thuộc BC, K thuộc AC)
1. Chứng minh tg AEBK nội tiếp đường tròn
2. Chứng minh CE.CB=CK.CA
3. Chứng minh góc OCA = góc BAE
.1.Cho tam giác ABC cân tại A có AD là đường phân giác.
a) Chứng minh tam giác ABD = tam giác ACD
b) Gọi G là trọng tâm tam giác ABC. Chứng minh ba điểm A, G, D thẳng hàng.
c) Tính DG biết AB 13cm,BC 10cm
2.Cho tam giác ABC vuông ở A, có AB = 16cm,AC = 30cm. Tính tổng các khoảng cách từ trọng tâm G của tam giác đến các đỉnh của tam giác.
3.Cho tam giác ABC, trung tuyến AM. Từ M kẻ đường thẳng song song với AB cắt C ở N. Biết AN = MN, BN cắt AM ở O. Chứng minh: a) Tam giác ABC cân ở A
b) O là trọng tâm tam giác ABC.
4.Cho tam giác cân ABC, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm O cách đều 3 đỉnh của tam giác ABC.
Cần gấp ạ!
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, đường cao BE và CF. Tiếp tuyến tại
B và C cắt nhau tại S, gọi M là giao điểm của BC và OS, N là giao điểm của AM và EF, P là
giao điểm của AS và BC. Chứng minh rằng tam giác AEM đồng dạng với tam giác ABS và NP
vuông góc với BC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N theo thứ tự
là chân các đường vuông góc kẻ từ H đến AC, AB. Đường thẳng MN cắt AH tại I và cắt
CB tại E. Gọi O là trung điểm của BC. Kẻ HD vuông góc với AE (D ∈ AE). Chứng minh
rằng:
a) I là trực tâm của tam giác AOE.
b) BDC = 90◦
Cho tam giác nhọn ABC (AB<AC) H là trực tâm. Qua A kẻ các đường thẳng song song với BH và CH tao với các đường thẳng này hình AEHF (AE//HF ) . Chứng minh:
1) tam giác EHA ĐỒNG DẠNG ABC
2) kẻ trung tuyến AM của tam giác ABC . chứng minh AM vuông góc EF
3) kẻ HI vuông góc. AM tại I . Chứng minh:MC^2=MI×MA
1. Cho tam giác ABC, AB<AC. Trung tuyến AM, phân giác AD. Một đường thẳng đi qua M và song song với AD cắt AB,AC thứ tự tại E,F. Chứng minh BE=CF.
Hướng dẫn: Qua C kẻ đường thẳng song song với EM cắt tia BE tại K. Chứng minh BE=KE, KE = CF.
2. Cho tam giác ABC vuông tại A,đường cao AH. Gọi D,E thứ tự là trung điểm của BH,AH. Chứng minh CE vuông góc với AD
Hướng dẫn: Sử dụng tính chất trực tâm tam giác cho tam giác ADC.
Cho tam giác ABC nhọn có 3 đường cao AD BE CF và trực tâm H. Lấy H' đối xứng với H qua BC. Gọi M N là chân đường vuông góc kẻ từ H' đến AB và AC. a, Chứng minh góc AEF=góc ABC. b, CHỨNG MINH EH là tia phân giác của góc DEF và M D N thẳng hàng. c, Gọi S S1 S2 S3 lần lượt là diện tích của các tam giác ABC AEF BDF CDE, chứng minh S1S2S3/S^3 <= 1/64
cho tam giác abc nhọn, ab<ac; o là giao điểm của các đường trung trực của tam giác abc. Vẽ ra phía ngoài của tam giác hai hình vuông abde, acgh. Gọi m,n theo thứ tự là trung điểm của eh và bc
a) chứng minh am vuông góc với bc
b) cho biết oh=oe. Tính góc bac
Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AC kẻ từ C tại D
1. Chứng minh tứ giác BHCD là hình bình hành
2. gọi M là trung điểm của BC, O là trung điểm của AD. Chứng minh 2OM=AH
3. Gọi G là trọng tâm tam giác ABC. Chứng minh 3 điểm H, G, O thẳng hàng