Cho tam giác nhọn ABC (AB≠AC) và O là giao điểm các đường trung trực của tam giác. Vẽ ra phía ngoài của tam giác hai hình vuông ABDE và ACGH. Gọi M, N lần lượt là trung điểm của EH và BC. a) Chứng minh AM vuông góc với BC. b) Trường hợp OH = OE: . Tứ giác AMON là hình gì ? Vì sao ? . Tính góc BAC. Câu hỏi tương tự Đọc thêm Báo cáo Toán lớp 8
Cho tam giác nhọn ABC (AB≠AC) và O là giao điểm các đường trung trực của tam giác. Vẽ ra phía ngoài của tam giác hai hình vuông ABDE và ACGH. Gọi M, N lần lượt là trung điểm của EH và BC.
a) Chứng minh AM vuông góc với BC.
b) Trường hợp OH = OE:
. Tứ giác AMON là hình gì ? Vì sao ?
. Tính góc BAC.
Cho tam giác nhọn ABC (AB≠AC) và O là giao điểm các đường trung trực của tam giác. Vẽ ra phía ngoài của tam giác hai hình vuông ABDE và ACGH. Gọi M, N lần lượt là trung điểm của EH và BC.
a) Chứng minh AM vuông góc với BC.
b) Trường hợp OH = OE:
. Tứ giác AMON là hình gì ? Vì sao ?
. Tính góc BAC.
Cho tam giác nhọn ABC (\(AB\ne AC\)) và O là giao điểm các đường trung trực của tam giác. Vẽ ra phía ngoài của tam giác hai hình vuông ABDE và ACGH. Gọi M, N lần lượt là trung điểm của EH và BC.
a) Chứng minh AM vuông góc với BC.
b) Trường hợp OH = OE:
. Tứ giác AMON là hình gì ? Vì sao ?
. Tính góc BAC.
Cho tam giac nhọn ABC (AB KHÁC AC) VÀ O là giao điểm của đuònge trung trục của tam giác vẽ ra phía ngoài của tam giác hai hình vuông ABDE và ACGH gọi M và N lần lượt là trung điểm của EH và BC cm a) AM vuông góc với BC
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 9: Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AB, M’ là
điểm đối xứng với M qua D.
a) Chứng minh điểm M’ dối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c) Cho BC = 4cm, tính chu vi tứ giác AM’BM. Tam giác ABC thỏa mãn điều
kiện gì để tứ giác AEBM là hình vuông.
Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 11: Cho tam giác ABC vuông tại A. Kẻ đường cao AH, dựng hình chữ nhật
AHBD và AHCE. Gọi P, Q theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) PQ là trung trực của đoạn thẳng AH.
c) Ba điểm D, P, H thẳng hàng.
d) DH vuông góc EH.
Bài 12: Cho tam giác ABC phía ngoài tam giác, ta dựng các hình vuông ABDE và
ACFG.
a) Chứng minh BG = CE Va BG vuông góc CE.
b) Gọi M, N theo thứ tự là các trung điểm của các đường thẳng BC, EG và Q, N
theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác
MNPQ là hình vuông.
Mọi người giúp mình với, mình đang cần gấp
1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D;
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE.
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng
5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF
Cho tam giác ABC nhọn. Vẽ ở phía ngoài tam giác các hình Vuông ABDE, ACFH. Gọi O là giao điểm của BH và EC. Chứng minh
1. Tam giác EAC bằng tam giác BAH
2.EH vuông góc với BH
3.D, O, F thẳng hàng
Cho tam giác ABC vẽ ở phía ngoài của tam giác dựng các hình vuông ABDE và ACDF .
a ) CMR : EC = BH và EC vuông góc với BH .
b ) Gọi O1 và O2 theo thự tự lần lượt là giao điểm của các đường chéo của các hình vuông ACFH và ABDE . Gọi I là trung điểm của BC . Tam giác O1IO2 là tam giác gì ?