H24

cho tam giác ABC nhọn nội tiếp đươgf tròn tâm o .đường cao AD cắt đường tròn tại điểm thứ 2 là M . Kẻ MN vuông góc với đường thẳng AB tại N

a) CM tứ giác MNBD nội tiếp và MA là tia phân giác của góc NMC

b) ND cắt AC tại E . Chứng minh ME vuông góc với AC (ai giúp mình phần b với)

 

NT
17 tháng 12 2023 lúc 11:24

a: Xét tứ giác MNBD có

\(\widehat{BDM}+\widehat{BNM}=90^0+90^0=180^0\)

=>MNBD là tứ giác nội tiếp

=>\(\widehat{NBD}+\widehat{NMD}=180^0\)

mà \(\widehat{NBD}+\widehat{ABC}=180^0\)(hai góc kề bù)

nên \(\widehat{NMD}=\widehat{ABC}\left(1\right)\)

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{NMD}=\widehat{AMC}\)

=>\(\widehat{NMA}=\widehat{CMA}\)

=>MA là phân giác của góc NMC

b: Ta có: NBDM là tứ giác nội tiếp

=>\(\widehat{DBM}=\widehat{DNM}\)

=>\(\widehat{MBC}=\widehat{ENM}\left(3\right)\)

Xét (O) có

\(\widehat{MBC}\) là góc nội tiếp chắn cung MC

\(\widehat{MAC}\) là góc nội tiếp chắn cung MC

Do đó: \(\widehat{MBC}=\widehat{MAC}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{ENM}=\widehat{MAC}\)

=>\(\widehat{ENM}=\widehat{EAM}\)

=>ANME là tứ giác nội tiếp

=>\(\widehat{AEM}+\widehat{ANM}=180^0\)

=>\(\widehat{AEM}=90^0\)

=>ME\(\perp\)AC

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
MT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
KH
Xem chi tiết
XR
Xem chi tiết
N9
Xem chi tiết