Ôn tập: Tam giác đồng dạng

H24

Cho tam giác ABC nhọn. M, N lần lượt là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O. Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, cúng cát nhau tại H. Gọi G là trọng tâm của tam giác ABC

a) Tam giác AHB đồng dạng với tam giác nào? Chứng minh

b) Chúng minh: tam giác HAG đồng dạng với tam giác OMG

c) Chứng minh H, G, O thẳng hàng

TH
12 tháng 3 2021 lúc 21:34

Dễ thấy H là trực tâm của tam giác ABC.

a) Bỏ qua

b) Gọi T là trung điểm của HC.

Ta có NT là đường trung bình của tam giác AHC nên NT // AH. Suy ra NT // OM.

TM là đường trung bình của tam giác BHC nên MT // BH. Suy ra  MT // ON.

Từ đó tứ giác NTMO là hình bình hành nên OM = NT = \(\dfrac{AH}{2}\).

Xét \(\Delta AHG\) và \(\Delta MOG\) có: \(\widehat{HAG}=\widehat{OMG}\) (so le trong, AH // OM) và \(\dfrac{AH}{MO}=\dfrac{AG}{MG}\left(=2\right)\).

Do đó \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\).

c) Do \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\) nên \(\widehat{AGH}=\widehat{MGO}\), do đó H, G, O thẳng hàng.

 

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
HL
Xem chi tiết
PM
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
TV
Xem chi tiết
HP
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết