TN

Cho tam giác ABC nhọn. Kẻ AH vuông góc với BC (H thuộc BC). Kẻ HM vuông góc với AB (M thuộc AB). Kẻ HN vuông góc với AC (N thuộc AC). Biết AB= 13 cm; AC= 15 cm; AH= 12 cm

a, Chứng minh tam giác ANH đồng dạng với tam giác AHC

b, Tính HC, AN

c, Chứng minh AM.AB=AN.AC

b, Tính diện tích tam giác AMN

NT
12 tháng 5 2022 lúc 22:24

a: Xét ΔANH vuông tại N và ΔAHC vuông tại H có

góc NAH chung

Do đó: ΔANH\(\sim\)ΔAHC

b: \(HC=\sqrt{15^2-12^2}=9\left(cm\right)\)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

Bình luận (0)
H24
12 tháng 5 2022 lúc 22:30

refer

a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có

AM chung

ME=MH

Do đó: ΔAEM=ΔAHM

b: Xét ΔBHE có 

BM là đường cao

BM là đường trung tuyến

Do đó: ΔBHE cân tại B

Xét ΔAEB và ΔAHB có 

AE=AH

EB=HB

AB chung

Do đó: ΔAEB=ΔAHB

Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900

hay AE⊥EB

Bình luận (10)
VH
12 tháng 5 2022 lúc 22:36

tham khảo

a: Xét ΔAEM vuông tại M và ΔAHM vuông tại M có

AM chung

ME=MH

Do đó: ΔAEM=ΔAHM

b: Xét ΔBHE có 

BM là đường cao

BM là đường trung tuyến

Do đó: ΔBHE cân tại B

Xét ΔAEB và ΔAHB có 

AE=AH

EB=HB

AB chung

Do đó: ΔAEB=ΔAHB

Suy ra: ˆAEB=ˆAHB=900AEB^=AHB^=900

hay AE⊥EB

Bình luận (0)

Các câu hỏi tương tự
ME
Xem chi tiết
HN
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
GG
Xem chi tiết
ON
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết