TK

Cho tam giác ABC nhọn đường cao BM và CN cắt nhau tại H. I là trung điểm BC , K là trung điểm AH. Chứng minh 4 điểm K , M , I , N cùng thuộc một đường tròn. 

NT
25 tháng 10 2023 lúc 20:13

Xét tứ giác BNMC có

\(\widehat{BNC}=\widehat{BMC}=90^0\)

=>BNMC là tứ giác nội tiếp đường tròn đường kính BC

=>BNMC nội tiếp (I)

Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)

=>AMHN là tứ giác nội tiếp đường tròn đường kính AH

=>AMHN nội tiếp (K)

Gọi giao điểm của AH với BC là E

Xét ΔABC có

CN,BM là đường cao

CN cắt BM tại H

Do đó: H là trực tâm

=>AH vuông góc BC tại E

\(\widehat{KNH}+\widehat{INH}=\widehat{KNI}\)

\(\Leftrightarrow\widehat{KNI}=\widehat{KHN}+\widehat{NCB}\)

\(=\widehat{EHC}+\widehat{ECH}=90^0\)

\(\widehat{KMI}=\widehat{KMB}+\widehat{IMB}\)

\(=\widehat{KHM}+\widehat{MBC}\)

\(=\widehat{MBC}+\widehat{MCB}=90^0\)

Xét tứ giác KNIM có

\(\widehat{KNI}+\widehat{KMI}=180^0\)

=>KNIM nội tiếp

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
MA
Xem chi tiết
TT
Xem chi tiết
LH
Xem chi tiết
AG
Xem chi tiết
BS
Xem chi tiết
TN
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết