PN

Cho tam giác ABC nhọn có AB<AC. Trên cạnh AC lấy E sao cho AB=AE. Gọi H là trung điểm BE. 1) Chứng minh tam giác ABH=AEH (c.c.c) 2) Chứng minh AH vuông góc BE 3) Trên AH lấy điểm F sao AH=HF. Kẻ Ax // BC. Trên Ax lấy I sao AI=BE (I cùng phía với AH). Chứng minh rằng: a) Chứng minh BF=AE b) Chứng minh 3 điểm I, B, F thẳng hàng ( kẻ hình nữa nhé ) 

cảm ơn các bạn nhiều , lm nhanh nhất có thể giúp mik nhé hihi

NT
6 tháng 12 2023 lúc 13:00

1: Xét ΔABH và ΔAEH có

AB=AE

BH=EH

AH chung

Do đó: ΔAHB=ΔAHE

2: ΔAHB=ΔAHE

=>\(\widehat{AHB}=\widehat{AHE}\)

mà \(\widehat{AHB}+\widehat{AHE}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHE}=\dfrac{180^0}{2}=90^0\)

=>AH\(\perp\)BE

3: Sửa đề: Kẻ tia Ax//BE, trên Ax lấy I sao cho AI=BE(I và B nằm cùng phía so với AH)

a: Xét tứ giác ABFE có

H là trung điểm chung của AF và BE

=>ABFE là hình bình hành

=>BF=AE và BF//AE

b:

Xét tứ giác AEBI có

AI//BE

AI=BE

Do đó: AEBI là hình bình hành

=>BI//AE

Ta có: BF//AE

BI//AE

BI,BF có điểm chung là B

Do đó: F,B,I thẳng hàng

loading...

Bình luận (0)

Các câu hỏi tương tự
QN
Xem chi tiết
MM
Xem chi tiết
NH
Xem chi tiết
PD
Xem chi tiết
QN
Xem chi tiết
H24
Xem chi tiết
PT
Xem chi tiết
PH
Xem chi tiết
HP
Xem chi tiết