H24

cho tam giác ABC nhọn có AB<AC. gọi M là Trung điểm của cạnh AC. Trên tia đối của tia MB lấy điểm D sao cho MB=MD
a) Chứng minh tam giác AMB= tam giác CMD
b) Chứng minh AB//CD
c) Lấy điểm I thuộc đoạn thẳng AB, điểm K thuộc đoạn CD sao cho BI=DK. Chứng minh 3 điểm I, M, K thẳng hàng 
_Trả lời hộ mik câu b, c. Iu cậu <3

NT
31 tháng 12 2023 lúc 15:41

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔAMB=ΔCMD

b: ta có: ΔAMB=ΔCMD

=>\(\widehat{MAB}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔIBM và ΔKDM có

IB=KD

\(\widehat{IBM}=\widehat{KDM}\)(hai góc so le trong, AB//CD)

BM=MD

Do đó: ΔIBM=ΔKDM

=>\(\widehat{IMB}=\widehat{KMD}\)

mà \(\widehat{IMB}+\widehat{IMD}=180^0\)(hai góc kề bù)

nên \(\widehat{KMD}+\widehat{IMD}=180^0\)

=>I,M,K thẳng hàng

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
TN
Xem chi tiết
LN
Xem chi tiết
LD
Xem chi tiết
YN
Xem chi tiết
VN
Xem chi tiết
PG
Xem chi tiết
DT
Xem chi tiết
DH
Xem chi tiết