Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TA

Cho tam giác ABC nhọn, các đường cao AD, BE cắt nhau tại H. Gọi O là giao điểm 3 đường trung trực của tam giác ABC. Trên tia đối của OA lấy điểm M sao cho O là trung điểm của AM. Gọi I là trung điểm của BC và G là trọng tâm của tam giác ABC

a. C/m: tứ giác BHCM là hình bình hàng, từ đó suy ra: I là trung điểm của HM

b. C/m: AH=2OI

c. C/m: 3 điểm H,G,O thẳng hàng

NT
12 tháng 8 2023 lúc 22:05

a: O là giao điểm của 3 đường trung trực của ΔABC

=>O là tâm đường tròn ngoại tiếp ΔABC

=>AM là đường kính của (O)

Xét (O) có

ΔABM nội tiếp đường tròn

AM là đường kính

=>ΔABM vuông tại B

=>BM vuông góc AB

=>BM//CH

Xét (O) có

ΔACM nội tiếp

AM là đường kính

=>ΔAMC vuông tại C

=>AC vuông góc CM

=>CM//BH

Xét tứ giác BHCM có

BH//CM

BM//CH

=>BHCM là hình bình hành

=>BC cắt HM tại trung điểm của mỗi đường

=>I là trung điểm của HM

b: Xét ΔMAH có

O,I lần lượt là trung điểm của MA,MH

=>OI là đường trung bình

=>OI//AH và OI=1/2AH

=>AH=2OI

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TN
Xem chi tiết
TQ
Xem chi tiết
HT
Xem chi tiết
GH
Xem chi tiết
DL
Xem chi tiết
KT
Xem chi tiết
DN
Xem chi tiết
NA
Xem chi tiết