a: Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB~ΔEHC
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
a: Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB~ΔEHC
b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{EAB}\) chung
Do đó: ΔAEB~ΔAFC
cho tam giác nhọn ABC (AB<AC) có đường cao BE , CF cắt nhau tại H .a) chứng minh tam giác FHB và tam giác EAB đồng dạng . b) chứng minh AF.AB = AE .AC . c) đường thẳng qua B và song song với È cắt AC tại M . gọi I là trung điểm BM , D là giao điểm EI và BC . chứng minh A H D thẳng hàng
cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) chứng minh tam giác AEB đồng dạng với tam giác AFC
b) chứng minh tam giác AFC đồng dạng với tam giác ABC
c) tia AH cắt BC tại D. chứng minh FC là tia phân giác góc DFE
d) đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM.So sánh diện tích của 2 tam giác AFM và tam giác IOM
Cho tam giác ABC có 3 góc nhọn. Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác AEB đồng dạng với tam giác AFC. Tính tỉ số đồng dạng với AB=4cm, AC=6cm.
b) Chứng minh: tam giác AEF đồng dạng với tam giác ABC.
c) Kéo dài EF và BC cắt nhau tại I. Gọi M là trung điểm của BC. Chứng minh: IE.IF=IM^2-BC^2/4.
d) Gọi N là trung điểm của AH. Chứng minh: MN vuông góc với EF.
cho tam giác ABC có ba góc nhọn (AB<AC) vẽ ba đường cao AD,BE và CF cắt nhau tại H
a) chứng minh tam giác ABD đồng dạng với tam giác CFB và BF.BA=BD.BC
b) chứng minh tam giác BFD đồng dạng tam giác BCA
c) qua A vẽ đường thẳng xy song song BC. Tia DF cắt đường thẳng xy tại M . Gọi I là giao điểm của của MC và AD . chứng minh EI song song BC
cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H
a/ chứng minh tam giác AEB ~ tam giác AFC
b/ chứng minh tam giác AEF ~ ABC
c/ tia AH cắt BC tại D. Chứng minh FC là tia phân giác góc DFE
d/ đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC ở C tại M. gọi O là trung điểm của BC, I là trung điểm của AM. so sánh diện tích của 2 tam giác AHM và tam giác IOM
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
Cho tam giác ABC ( AB<AC) nhọn, các đường cao AD,BE,CF cắt nhau tại H
a) Chứng minh tam giác AEB và tam giác AFC đồng dạng. Từ đó suy ra AF.AB=AE.AC
b) Chứng minh tam giác AEF và tam giác ABC đồng dạng
c) Gọi K là giao điểm của của EF và BC. Gọi O là trung điểm của BC. Chứng minh rằng KF.KE=KB.KC và KF.KE=KO2 -BC2/4
d) Tia phân giác góc BKF cắt AB tại N và tia phân giác góc BAC cắt BC tại M. chứng minh MN vuông góc AB
P/s: Các bạn giải giúp mình bài trên nhé.
Cho tam giác ABC có 3 góc nhọn, các điểm M,N thứ tự là trung điểm của BC và AC. Các đường trung trực của BC và AC cắt nhau tại O. Qua A kẻ đường thẳng song song với OM, qua B kẻ đường thẳng song song với ON, chúng cắt nhau tại H.
a, Nối MN, Tam giác AHB đồng dạng với tam giác nào?
b. Gọi G là trọng tâm tam giác ABC, chứng minh tam giác AHG đồng dạng với MOG
c. Chứng minh ba điểm H,O,G thẳng hàng.
Giúp mình nhé!! Thanks nhìu
Cho tam giác có ba góc nhọn, hai đường cao BE, CF cắt nhau tại H (E?AC, F?AB ). Chúng minh: a) tam giác AEB ?đồng dạng với ?. tam giác AFC b)CM tam giác AEF ? đồng dạng với ?.TAM GIÁC ABC c) Tia AH cắt BC tại D. Vẽ DM vuông góc với AB tại M, DN vuông góc với AC tại N, DK vuông góc với CF tại K. Chứng minh 3 điểm M, K, N thẳng hàng. giải giùm tớ câu c thôi
Cho tam giác ABC nhọn(AB<AC),2 đường cao BE và CF cắt nhau tại H
a) chứng minh tam giác FHB và tam giác EHC đồng dạng
b) Tia AH cắt BC tại D. Chứng minh CD.CB=CE.CA
c)gọi K là giao điểm của EF với BC. Chứng minh góc KBF =góc KEC
d) chứng minh DA là tia phân giác của góc EDF
Quan trọng là câu D nha các bạn