a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC
b, Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC=6\left(cm\right)\)
c, Vì MN//BC nên BMNC là hình thang
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
Do đó MN//BC
b, Vì MN là đtb tg ABC nên \(MN=\dfrac{1}{2}BC=6\left(cm\right)\)
c, Vì MN//BC nên BMNC là hình thang
Cho ABC cân tại A . Gọi M, N lần lượt là trung điểm của AB và AC.
a) Cho BC cm 6 . Tính độ đài MN.
b) Chứng minh tứ giác BMNC là hình thang cân.
c) Gọi H là trung điểm BC, Q là trung điểm BH , P là giao điểm của AH và MN. Chứng minh tứ giác QMPH là hình chữ nhật.
Cho ABC cân tại A . Gọi M, N lần lượt là trung điểm của AB và AC.
a) Cho BC cm 6 . Tính độ đài MN.
b) Chứng minh tứ giác BMNC là hình thang cân.
c) Gọi H là trung điểm BC, Q là trung điểm BH , P là giao điểm của AH và MN. Chứng minh tứ giác QMPH là hình chữ nhật.
Cho tam giác ABC nhọn (AB<AC). Gọi M và N lần lượt là trung điểm của AB, AC.
a. Chứng minh tứ giác BMNC là hình thang
b. Qua M vẽ đường thẳng song song với AC cắt BC tại F. Chứng minh tứ giác MNCE là hình bình hành
c. Đường cao AH của tam giác ABC cắt MN tại điểm I. Gọi F là trung điểm của BH. Chứng minh: tứ giác AIFM là hình bình hành.
Cho tam giác ABC. Gọi M, N theo thứ tự là trung điểm của AB và AC.
a/ Chứng minh: tứ giác BMNC là hình thang.
b/ Tính BC, biết MN=10cm.
cho tam giác ABC có ba góc nhọn và AB < AC.Gọi M,N,P lần lượt là trung điểm của AB,AC,BC.kẻ AQ vuông góc BC(Q thuộc BC)
a)Biết BC=20cm,tính MN và chứng minh tứ giác MNPB là hình bình hành
b)Chứng minh tứ giác MNPQ là hình thang cân
cho tam giác abc có 3 góc nhọn ab<ac. Gọi M,N,Q lần lượt là trung điểm của cạnh AB,AC,BC và AH là đường cao của tam giác ABC (H thuộc BC).
a) Chứng minh : Tứ giác BMNC là hình thang
b) Chứng minh: Tứ giác AMQN là hình bình hành
c) Gọi E là điểm đối xứng của điểm H qua điểm M
Chứng minh : Tứ giác AHBE là hình chữ nhật
d) Gọi K là hình chiếu của H trên AB. Gọi I,J lần lượt là trung điểm của AK và BE.
Chứng minh: Góc HIJ = 90
cho tam giác abc có 3 góc nhọn ab<ac. Gọi M,N,Q lần lượt là trung điểm của cạnh AB,AC,BC và AH là đường cao của tam giác ABC (H thuộc BC).
a) Chứng minh : Tứ giác BMNC là hình thang
b) Chứng minh: Tứ giác AMQN là hình bình hành
c) Gọi E là điểm đối xứng của điểm H qua điểm M
Chứng minh : Tứ giác AHBE là hình chữ nhật
d) Gọi K là hình chiếu của H trên AB. Gọi I,J lần lượt là trung điểm của AK và BE.
Chứng minh: Góc HIJ = 90
Cho tam giác ABC nhọn(AB < AC) có M, N lần lượt là trungđiểmcủa AB,AC.
a/Chứng minhtứ giác BMNC là hình thang.
b/Vẽ đường cao AH của tam giác ABC. Gọi I là trung điểmcủaBC. Chứng minh tứ giác MNIH là hình thang cân.
Cho tam giác ABC vuông tại A có Ab = 6cm, AC=8cm. Gọi M,N,P lần lượt là trung điểm của AB,AC,BC. a) Tính BC,MN b) Chứng minh tứ giác BCNM là hình thang c) Chứng minh tứ giác BMNP là hình bình hành