a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AQ và MN=AQ
hay AMNQ là hình bình hành
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AQ và MN=AQ
hay AMNQ là hình bình hành
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
Cho tam giác ABC nhọn (ab<ac). Kẻ đường cao AH. Gọi M là trung điểm của AB, N là điểm đối xứng với H qua M.
a. C/m : Tứ giác ANBH là hình chữ nhật.
b. Trên tia đối của tia HB lấy điểm E sao cho H là trung điểm của BE. Gọi F là điểm đối xứng với A qua H. C/m: ABEF là hình thoi.
c. Gọi I là giao điểm của AB và NE. C/m: MI song song BC.
d. Đường thẳng MI cắt AC tại K. Kẻ NQ vuông góc với KH tại Q. Chứng minh AQ vuông góc BQ.
Cho tam giác ABC vuông tại A(AB<AC),đường cao AH. Gọi M,N,Q lần lượt là trung điểm của các cạnh AB,AC,BC
a,cmr tứ giác AMNQ là hbh
b, cmr HQ=MN
c, Lấy điểm K đối xứng với N qua Q,I đối xứng với N qua M
cm 2 điểm I và K đối xứng nhau qua A
d, Khi AB cố định đến C di động trên tia Ax vuông góc với AB thì tâm hình chữ nhật AMNQ chạy trên đường nào
Cho tam giác ABC cân tại A có AH là đường cao. Gọi M, N là trung điểm 2 cạnh AB, AC. Biết AH=16 cm, BC=12 cm
a) tính DT tam giác AC, đội dài MN
b) Gọi E là điểm đối xứng của H qua M. Cm tứ giác AHBE là ình chữ nhật
C) Gọi F là điểm đối xứng của A qua H. Cm tứ giác ABFC là hình thoi
d) Gọi K là hình chiếu ủa H lên cạnh FC, gọi I là trung điểm HK. Cm BK vuông góc IF
GIÚP MÌNH CÂU d) VỚI !!!
Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, Q lần lượt là trung điểm của các cạnh AB, BC, CA.
a) Chứng minh AMNQ là hình chữ nhật.
b) Lấy điểm K đối xứng với điểm N qua Q. Điểm I đối với điểm N qua M.
Chứng minh: Ba điểm I, K, A thẳng hàng.
c) Chứng minh: Hai điểm I và K đối xứng nhau qua điểm A.
d) Kẻ đường cao AH (H thuộc BC) chứng minh tứ giác MHNQ là hình thang cân.
e) Khi AB cố định điểm C di động trên tia Ax vuông góc với AB, thì tâm của hình chữ nhật AMNQ chạy trên đường nào?
giúp mình nhé!
cho tam giác ABC cân tại A .Gọi H,K lần lượt là trung điểm của BC,AC
a) CM:ABHK là hình thang
b)trên tia đối của tia AH lấy điểm sao cho H là trung điểm AE.CM: ABEC là hình thoi
c) qua A vẽ dường vuông góc với AH cắt HK tại D.CM:ADHB là hình bình hành
d)CM:ADCH là hình chữ nhật
e)vẽ Hn là đường cao tam giác AHB,gọi I là trung điểm AN trên tia đối tia BH lấy M sao cho B là trung điểm MH . CM: MH vuông góc HI
Cho tam giác ABC vuông tại A có AH là đường cao. Từ H vẽ HD vuông vuông góc cạnh AB tại D, vẽ HE vuông góc với cạnh AC tại E, biết AB = 15cm và BC = 25cm.
a) Tính độ dài cạnh Ac và dện tích tam giác ABC
b) Chứng minh tứ giác ADEH là hình chữ nhật.
c) Trên tia đối của tia AC lấy điểm F sao cho AF = AE. Chứng minh AFDH là hình bình hành.
d) Gọi K là điểm đối xứng của B qua A, gọi M là trung điểm của AH. Chứng minh CM thẳng góc HK
Cho tam giác ABC cân tại A có AH là đường cao. Gọi M là trung điểm của AB
a, Tính diện tích tam giác ABC biết AH= 6 cm; BC= 8cm
b, Gọi E đối xứng với H qua M. Chứng minh tứ giác AHBE là hình chữa nhật
c, Gọi F là điểm đối xúng với A qua H. Chứng minh tứ giác ABFC là hình thoi
d, K là hình chiếu của H trên FC. Gọi I,Q lần lượt là trung điểm của HK, KC. Chứng minh BK vuông góc với IF
Cho tam giác ABC vuông tại A; đường cao AH. Gọi K, D lần lượt là hình chiếu của H trên các cạnh AB, AC; I là trung điểm AH. C/m rằng a, Tứ giác AKHD là hcn b,K đối xứng với D qua I c, Gọi M là trung điểm BC. C/m góc BAH = góc CM d, C/m KD vuông góc AM e, Gọi E, F lần lượt là trung điểm BH và CK. C/m KE song song DF