GH

 Cho tam giác ABC. Gọi M là trung điểm của canh BC, Trên tia đối của tia MA lấy điểm D sao cho MD- MA a. Chứng minh tam giác MAB = tam giác MDC b. Chứng minh: tam giác BAC= tam giác CDB c. Trên đoạn thẳng AB và CD lần lượt lấy các điểm E và F sao cho AE = DF. Chứng minh rằng ba điểm E, M, F thẳng hàng.

NT
7 tháng 1 2022 lúc 10:26

a: Xét ΔMAB và ΔMDC có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: BA=DC; AC=DB

Xét ΔBAC và ΔCDB có 

BA=CD

AC=DB

BC chung

Do đó: ΔBAC=ΔCDB

c: Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

Suy ra: AD và FE cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của AD

nên M là trung điểm của FE

hay F,M,E thẳng hàng

Bình luận (1)

Các câu hỏi tương tự
LP
Xem chi tiết
NC
Xem chi tiết
NU
Xem chi tiết
ML
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết
MP
Xem chi tiết
NL
Xem chi tiết
CT
Xem chi tiết