DT

cho tam giác ABC . Gọi M là trung điểm của BC . Trên tia đối của tia AM lấy điểm D sao cho MA=MD
a, chứng minh tam giác AMB = tam giác DMC
b, chứng minh AB=DC và AB//DC
c, gọi N là trung điểm của AC , lấy E sao cho N là trun điểm của BE . chứng minh C là trung điểm của ED

NT

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔAMB=ΔDMC

b: ta có; ΔAMB=ΔDMC

=>AB=DC

Ta có: ΔAMB=ΔDMC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//DC

c: Xét ΔNAB và ΔNCE có

NA=NC

\(\widehat{ANB}=\widehat{CNE}\)(hai góc đối đỉnh)

NB=NE

Do đó: ΔNAB=ΔNCE

=>AB=CE 

Ta có: ΔNAB=ΔNCE

=>\(\widehat{NAB}=\widehat{NCE}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CE

Ta có: AB//CE

AB//CD

CE,CD có điểm chung là C

Do đó: E,C,D thẳng hàng

Ta có: EC=AB

CD=AB

Do đó: EC=CD
mà E,C,D thẳng hàng

nên C là trung điểm của ED

Bình luận (0)

Các câu hỏi tương tự
HM
Xem chi tiết
TP
Xem chi tiết
TP
Xem chi tiết
DA
Xem chi tiết
PN
Xem chi tiết
H24
Xem chi tiết
HM
Xem chi tiết
TL
Xem chi tiết
PN
Xem chi tiết