Kẻ \(BD\perp AC\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC\) (1)
Mặt khác trong tam giác vuông ABD ta có:
\(sinA=\dfrac{BD}{AB}\Rightarrow BD=AB.sinA\) (2)
(1);(2) \(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC.sinA\)
Kẻ \(BD\perp AC\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}BD.AC\) (1)
Mặt khác trong tam giác vuông ABD ta có:
\(sinA=\dfrac{BD}{AB}\Rightarrow BD=AB.sinA\) (2)
(1);(2) \(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC.sinA\)
Các bạn giúp mình với
cho tam giác ABC có 3 góc nhọn , từ A kẻ AH vuông góc với BC . Chứng minh diện tích tam giác ABC = diện tich =1/2.AB.AC.SinA
Cho tam giác ABC vuông tại A có AB=1, AC= căn 2. Hai đường trung tuyến AE và BD của tam giác ABC cắt nhau tai I.
a. Tính diện tích tứ giác ADEB
b. Chứng minh rằng AE và BD vuông góc.
Giải nhanh dùm mình, mình cần gấp.
tam giác ABC có góc nhọn A, AB=c, AC=b. cho diện tích tam giác là 2 phần 5 bc. tính độ dài cạnh BC theo b,c
Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.
Cho tam giác ABC vuông tại A,AD vuông góc BC (D thuộc BC)
a, Chứng minh rằng : Tam giác DBA đồng dạng với tam giác ABC
b, Chứng minh rằng : AB^2 = BC x BD
c, Đường phân giác trong BE ( E thuộc AC ) của tam giác ABC cắt AD tại F
Chứng minh rằng : FD/FA = EA/EC
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O. BH vuông góc với BC, E,F là chân các đường vuông góc kẻ từ H xuống cạnh AB và BC. I là giao điểm của È vad BO. Chứng minh rằng tam giác ABC đồng dạng với tam giác FBE
Cho đương tròn tâm O, đường kính BC cố định và điểm A thuộc đường tròn (O). kẻ AH vuông góc BC tại H. Gọi I,K theo thứ tự là tâm đường tròn nội tiếp của tam giác AHB và AHC. Đường thẳng IK cắt AB tại M và cắt AC tại N.
a) Chứng minh tam giác AMN vuông cân
b) Xác định vị trí của điểm A để tứ giác BCNM nội tiếp
c) Chứng minh diện tích tam giác AMN nhỏ hơn hoặc bằng 1/2 diện tích tam giác ABC
Cho tam giác ABC vuông cân tại A. M là trung điểm BC. P thuộc AC, BI= AI.
a, tam giác MIN là tam giác gì ?
b, biết diện tích tam giác MIN = 1/4 diện tích tam giác ABC. Tính góc ABP
Cho tam giác ABC vuông tại A, biết AB=1/3AC.
a)Tính số đo B và C của tam giác ABC.
b) Kẻ AH vuông góc BC. Tính tỉ số BH/CH.
c) Biết diện tích tam giác ABC bằng 15cm^2. Tính diện tích tam giác ABH
Cho tam giác ABC vuông tại A, biết AB=1/3AC.
a)Tính số đo B và C của tam giác ABC.
b) Kẻ AH vuông góc BC. Tính tỉ số BH/CH.
c) Biết diện tích tam giác ABC bằng 15cm^2. Tính diện tích tam giác ABH
GIÚP MIK VS