Gọi AH là đường cao của tam giác ABC (H thuộc BC)
Ta có : \(cotB=\frac{BH}{AH};cotC=\frac{CH}{AH}\) . Theo giả thiết : \(cotB=3cotC\Rightarrow BH=3CH\)
Mà BH + CH = BC\(\Rightarrow BC=4CH\Rightarrow CH=\frac{BC}{4}=\frac{2CM}{4}=\frac{CM}{2}\)
Vậy \(CH=\frac{1}{2}CM\); Ta cũng có : \(BH=BM+MH=2CH+MH=3CH\Rightarrow MH=CH\)
Do đó AH là đường trung trực của CM => AC = AM (đpcm)
AM sao có thể bằng AC đc? Đề có vấn đề j ko bn?