HC

cho tam giác ABC đường cao AH  kẻ HE HF lần lượt là hình chiếu của AB AC     CM \(\dfrac{EB}{FC}\)=\(\left(\dfrac{AB}{AC}\right)^3\)

NT
8 tháng 7 2021 lúc 23:37

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(HB^2=BE\cdot AB\)

\(\Leftrightarrow BE=\dfrac{HB^2}{AB}\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại A có HF là đường cao ứng với cạnh huyền AC, ta được:

\(CH^2=CF\cdot CA\)

\(\Leftrightarrow CF=\dfrac{CH^2}{CA}\)

Ta có: \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)

\(=\dfrac{BH^2}{CH^2}:\dfrac{AB}{AC}\)

\(=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NH
Xem chi tiết
MN
Xem chi tiết
HV
Xem chi tiết
TN
Xem chi tiết
GN
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết