Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABH vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(HB^2=BE\cdot AB\)
\(\Leftrightarrow BE=\dfrac{HB^2}{AB}\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔACH vuông tại A có HF là đường cao ứng với cạnh huyền AC, ta được:
\(CH^2=CF\cdot CA\)
\(\Leftrightarrow CF=\dfrac{CH^2}{CA}\)
Ta có: \(\dfrac{EB}{FC}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{CH^2}:\dfrac{AB}{AC}\)
\(=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)