HT

Cho tam giác ABC đường cao AH gọi D,EM thứ tự là trung điểm của AB , AC, BC 

A chứng minh tứ giác ADME là hình bình hành 

B tam giác ABC có thêm điều kiện gì để tứ giác ADME là hình chữ nhật

C chứng minh rằng tứ giác DHME là hình thang cân

NT
26 tháng 11 2023 lúc 18:37

a: Xét ΔBAC có

D,M lần lượt là trung điểm của BA,BC

=>DM là đường trung bình của ΔBCA

=>DM//AC và \(DM=\dfrac{AC}{2}\)

DM//AC

E\(\in\)AC

Do đó: DM//AE

DM=AC/2

\(AE=\dfrac{AC}{2}\)

Do đó: DM=AE

Xét tứ giác ADME có

DM//AE

DM=AE

Do đó: ADME là hình bình hành

b: Để hình bình hành ADME trở thành hình chữ nhật thì \(\widehat{DAE}=90^0\)

=>\(\widehat{BAC}=90^0\)

c: Xét ΔABC có

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình của ΔABC

=>DE//BC và \(DE=\dfrac{BC}{2}\)

=>DE//HM

ΔHAC vuông tại H

mà HE là đường trung tuyến

nên \(HE=AE\)

mà AE=DM(cmt)

nên HE=DM

Xét tứ giác DHME có DE//HM

nên DHME là hình thang

Hình thang DHME có DM=HE

nên DHME là hình thang cân

Bình luận (0)