PB

Cho tam giác ABC, đường cao AH. Gọi D, E, M theo thứ tự là trung điểm của AB, AC, BC. Chứng minh rằng tứ giác DEMH là hình thang cân.

CT
24 tháng 7 2019 lúc 4:43

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Vì D trung điểm của AB (gt) và E trung điểm của AC (gt) nên DE là đường trung bình của tam giác ABC

⇒ DE // BC hay DE // HM

Suy ra tứ giác DEMH là hình thang

* Mà M trung điểm BC (gt) nên DM là đường trung bình của ∆ BAC

⇒ DM = 1/2 AC (tính chất đường trung bình của tam giác) (1)

* Trong tam giác vuông AHC có ∠ (AHC) = 90 0 . HE là đường trung tuyến ứng với cạnh huyền AC.

⇒ HE = 1/2 AC (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: DM = HE

Vậy hình thang DEMH là hình thang cân (vì có 2 đường chéo DM và EH bằng nhau).

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
TL
Xem chi tiết
HT
Xem chi tiết
DM
Xem chi tiết
NV
Xem chi tiết
DM
Xem chi tiết
CT
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết