ΔABC~ΔA'B'C'
=>\(\dfrac{AB}{A'B'}=\dfrac{AC}{A'C'}=\dfrac{BC}{B'C'}\)
=>\(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}\)
=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=\dfrac{BC}{5}\)
=>AB là cạnh nhỏ nhất trong ΔABC
Theo đề, ta có: AB=3cm
=>\(\dfrac{AC}{4}=\dfrac{BC}{5}=\dfrac{3}{3}=1\)
=>\(AC=4\cdot1=4\left(cm\right);BC=5\cdot1=5\left(cm\right)\)