MH

Cho tam giác ABC đều có cạnh bằng a. Gọi O là trung điểm của BC. Một góc xOy bằng 60o quay quanh điểm O sao cho hai cạnh Ox, Oy luôn cắt AB và AC lần lượt tại M và N.

a) cm: Tam giác OBM đồng dạng với tam giác NCO.

b) cm: BC2=4BM.CN.

c) Khoảng cách từ điểm O đến MN không đổi khi Ox; Oy thay đổi.

d) Từ O vẽ đường thẳng d bất kì cắt AB; AC tại P; Q.

CMR: \(\dfrac{1}{AP}+\dfrac{1}{AQ}\) không đổi.

NL
14 tháng 1 2022 lúc 22:55

a.

a.

\(\widehat{BMO}+\widehat{B}+\widehat{BOM}=\widehat{BOM}+\widehat{MON}+\widehat{CON}=180^0\)

\(\Rightarrow\widehat{BMO}=\widehat{CON}\) (do \(\widehat{B}=\widehat{MON}=60^0\))

\(\Rightarrow\left\{{}\begin{matrix}\widehat{B}=\widehat{C}=60^0\\\widehat{BMO}=\widehat{CON}\end{matrix}\right.\) \(\Rightarrow\Delta OBM\sim\Delta NCO\) (g.g)

b.

Từ câu a \(\Rightarrow\dfrac{OB}{CN}=\dfrac{BM}{OC}\Rightarrow OB.OC=BM.CN\Rightarrow\dfrac{BC}{2}.\dfrac{BC}{2}=BM.CN\Rightarrow...\)

Bình luận (0)
NL
14 tháng 1 2022 lúc 22:55

c.

Lần lượt kẻ OD và OE vuông góc MN và AB.

Do O cố định \(\Rightarrow\) OE cố định

Từ câu a ta có: \(\dfrac{BM}{OC}=\dfrac{OM}{ON}\Rightarrow\dfrac{BM}{OM}=\dfrac{OC}{ON}=\dfrac{OB}{ON}\) (1)

Đồng thời \(\widehat{B}=\widehat{MON}=60^0\) (2)

(1);(2) \(\Rightarrow\Delta OBM\sim\Delta NOM\left(c.g.c\right)\Rightarrow\widehat{BMO}=\widehat{OMN}\)

\(\Rightarrow\Delta_VOME=\Delta_VOMD\left(ch-gn\right)\)

\(\Rightarrow OD=OE\), mà OE cố định \(\Rightarrow OD\) cố định

Bình luận (0)
NL
14 tháng 1 2022 lúc 22:56

d.

Không mất tính tổng quát, giả sử d cắt AB, AC như hình vẽ bên dưới

Trên tia AC lấy G sao cho \(AG=AP\Rightarrow\Delta APG\) đều (tam giác cân 1 góc 60 độ)

\(\Rightarrow\) AO đồng thời là trung trực PG

\(\Rightarrow OP=OG\Rightarrow\Delta OBP=\Delta OCG\left(c.c.c\right)\)

\(\Rightarrow\widehat{QOC}=\widehat{BOP}\left(đối-đỉnh\right)=\widehat{COG}\Rightarrow OC\) là phân giác \(\widehat{QOG}\) và OA là phân giác ngoài đỉnh O tam giác OQG

\(\Rightarrow\dfrac{CQ}{CG}=\dfrac{OQ}{OG}=\dfrac{AQ}{AG}\) theo định lý phân giác \(\Rightarrow\dfrac{CQ}{AQ}=\dfrac{CG}{AG}\)

\(\Rightarrow\dfrac{AC-AQ}{AQ}=\dfrac{AG-AC}{AG}\Rightarrow\dfrac{AC}{AQ}-1=1-\dfrac{AC}{AG}\)

\(\Rightarrow AC\left(\dfrac{1}{AQ}+\dfrac{1}{AG}\right)=2\Rightarrow\dfrac{1}{AQ}+\dfrac{1}{AG}=\dfrac{2}{AC}\)

\(\Rightarrow\dfrac{1}{AQ}+\dfrac{1}{AP}=\dfrac{2}{AC}\) không đổi

Bình luận (0)
NL
14 tháng 1 2022 lúc 22:56

undefined

Bình luận (0)

Các câu hỏi tương tự
DH
Xem chi tiết
DQ
Xem chi tiết
HA
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
VM
Xem chi tiết
VQ
Xem chi tiết