Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

KD

cho tam giác ABC đều cạnh a . Điểm M di động trên BC . Gọi D,E lần lượt là chân đường vuông góc kẻ từ M đến các cạnh AB,AC A. Chứng minh chu vi tứ giác ADME không đổi B. Xác định vị trí của điểm M đề tứ giác BDEC nội tiếp được trong đường tròn

DH
27 tháng 6 2021 lúc 16:45

A B C M D E 1 1 1 1 2

a) Do ΔABC đều => AB = BC = AC = a; \(\widehat{A}=\widehat{B}=\widehat{C}=60^o\)

Xét ΔBDM vuông tại D có: MD = MB.sin\(\widehat{B}\) = MB.sin60o = MB.\(\dfrac{\sqrt{3}}{2}\)

                                           BD = MB.cos\(\widehat{B}\) = MB.cos60o = \(\dfrac{1}{2}\).MB

ΔCEM vuông tại E có: ME = MC.sin\(\widehat{C}\) = MC.sin60o = MC.\(\dfrac{\sqrt{3}}{2}\)

                                     EC = MC.cos\(\widehat{C}\) = MC.cos60o = \(\dfrac{1}{2}\).MC

=> Chu vi tứ giác ADME là:

AD + AE + MD + ME = (AB - BD) + (AC - CE) + MB.\(\dfrac{\sqrt{3}}{2}\) + MC.\(\dfrac{\sqrt{3}}{2}\)

                                  = AB + AC - (BD + CE) + \(\dfrac{\sqrt{3}}{2}\)(MB + MC)

                                  = AB + AC - \(\dfrac{1}{2}\).(MB + MC) +   \(\dfrac{\sqrt{3}}{2}\)(MB + MC)

                                   = AB + AC + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).BC

                                   = a + a + \(\dfrac{\left(\sqrt{3}-1\right)}{2}\).a = \(\dfrac{3+\sqrt{3}}{2}\).a

Do a không đổi => chu vi tứ giác ADME không đổi 

b) Xét ΔBMD vuông tại D => \(\widehat{M_1}=90^o-\widehat{B}=90^o-60^o=30^o\)

ΔCME vuông tại E => \(\widehat{M_2}=90^o-\widehat{C}=90^o-60^o=30^o\) => 

Tứ giác BDEC nội tiếp đường tròn ⇔ \(\widehat{E_2}=\widehat{B}=60^o\)

Mà \(\widehat{B}=\widehat{C}=60^o\) (cmt) => \(\widehat{E_2}=\widehat{C}\). Mà 2 góc ở vị trí đồng vị => DE // BC

=> \(\left\{{}\begin{matrix}\widehat{D_1}=\widehat{M_1}=30^o\\\widehat{E_1}=\widehat{M_2}=30^o\end{matrix}\right.\)(hai góc so le trong)

=> \(\widehat{D_1}=\widehat{E_1}\left(=30^o\right)\)

=> ΔMDE cân tại M => MD = ME

=> \(\dfrac{\sqrt{3}}{2}\).MB = \(\dfrac{\sqrt{3}}{2}\).MC => MB = MC => M là trung điểm của BC

Vậy để tứ giác BDEC nội tiếp thì M là trung điểm của BC

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
LA
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
CM
Xem chi tiết