Ta có: `Cx////AB=>` \(\left\{{}\begin{matrix}\widehat{BCx}=\widehat{B}\left(\text{so le trong}\right)\\\widehat{DCx}=\widehat{A}\left(\text{đồng vị}\right)\end{matrix}\right.\)
Mà `\hatA=\hatB` (GT)
`=> \hat(BCx)=\hat(DCx)`
`=> Cx` là phân giác `\hat(DCB)`.
Ta có: \(\widehat{DCx}=\widehat{CAB}\)(hai góc đồng vị, Cx//AB)
\(\widehat{BCx}=\widehat{CBA}\)(hai góc so le trong, Cx//AB)
mà \(\widehat{CAB}=\widehat{CBA}\)
nên \(\widehat{DCx}=\widehat{BCx}\)
hay Cx là tia phân giác của \(\widehat{DCB}\)